Алгоритмически неразрешимые проблемы
За время своего существования человечество придумало множество алгоритмов для решения разнообразных практических и научных проблем. Зададимся вопросом – а существуют ли какие-нибудь проблемы, для которых невозможно придумать алгоритмы их решения? Утверждение о существовании алгоритмически неразрешимых проблем является весьма сильным – мы констатируем, что мы не только сейчас не знаем соответствующего алгоритма, но мы не можем принципиально никогда его найти. Успехи математики к концу XIX века привели к формированию мнения, которое выразил Д. Гильберт – «в математике не может быть неразрешимых проблем», в связи с этим формулировка проблем Гильбертом на конгрессе 1900 года в Париже была руководством к действию, констатацией отсутствия решений в данный момент. Первой фундаментальной работой, связанной с доказательством алгоритмической неразрешимости, была работа Курта Гёделя – его известная теорема о неполноте символических логик. Это была строго формулированная математическая проблема, для которой не существует решающего ее алгоритма. Усилиями различных исследователей список алгоритмически неразрешимых проблем был значительно расширен.
Сегодня принято при доказательстве алгоритмической неразрешимости некоторой задачи сводить ее к ставшей классической задаче – «задаче останова».
Теорема. Не существует алгоритма (машины Тьюринга), позволяющего по описанию произвольного алгоритма и его исходных данных (и алгоритм и данные заданы символами на ленте машины Тьюринга) определить, останавливается ли этот алгоритм на этих данных или работает бесконечно.
Таким образом, фундаментально алгоритмическая неразрешимость связана с бесконечностью выполняемых алгоритмом действий, т.е. невозможностью предсказать, что для любых исходных данных решение будет получено за конечное количество шагов. Тем не менее, можно попытаться сформулировать причины, ведущие к алгоритмической неразрешимости, эти причины достаточно условны, так как все они сводимы к проблеме останова, однако такой подход позволяет более глубоко понять природу алгоритмической неразрешимости.
|