Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритмически неразрешимые проблемы





 

За время своего существования человечество придумало множество алгоритмов для решения разнообразных практических и научных проблем. Зададимся вопросом – а существуют ли какие-нибудь проблемы, для которых невозможно придумать алгоритмы их решения?

Утверждение о существовании алгоритмически неразрешимых проблем является весьма сильным – мы констатируем, что мы не только сейчас не знаем соответствующего алгоритма, но мы не можем принципиально никогда его найти.

Успехи математики к концу XIX века привели к формированию мнения, которое выразил Д. Гильберт – «в математике не может быть неразрешимых проблем», в связи с этим формулировка проблем Гильбертом на конгрессе 1900 года в Париже была руководством к действию, констатацией отсутствия решений в данный момент.

Первой фундаментальной работой, связанной с доказательством алгоритмической неразрешимости, была работа Курта Гёделя – его известная теорема о неполноте символических логик. Это была строго формулированная математическая проблема, для которой не существует решающего ее алгоритма. Усилиями различных исследователей список алгоритмически неразрешимых проблем был значительно расширен.

 

Сегодня принято при доказательстве алгоритмической неразрешимости некоторой задачи сводить ее к ставшей классической задаче – «задаче останова».

 

Теорема. Не существует алгоритма (машины Тьюринга), позволяющего по описанию произвольного алгоритма и его исходных данных (и алгоритм и данные заданы символами на ленте машины Тьюринга) определить, останавливается ли этот алгоритм на этих данных или работает бесконечно.

 

Таким образом, фундаментально алгоритмическая неразрешимость связана с бесконечностью выполняемых алгоритмом действий, т.е. невозможностью предсказать, что для любых исходных данных решение будет получено за конечное количество шагов.

Тем не менее, можно попытаться сформулировать причины, ведущие к алгоритмической неразрешимости, эти причины достаточно условны, так как все они сводимы к проблеме останова, однако такой подход позволяет более глубоко понять природу алгоритмической неразрешимости.

 







Дата добавления: 2015-09-07; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия