Электроэнергетика
1. Типы электростанций и их место в графике нагрузки электросистемы. Системные эксплуатационные свойства электрических станций Электрические станции являются единственными источниками активной мощности в энергосистеме. Основную часть электрической энергии в Единой энергосистеме вырабатывают тепловые и гидравлические электростанции. С системной точки зрения важны следующие свойства электростанций: · возможность свободы назначения режимов по мощности от Pmin до Pmax; · возможность частых пусков и остановов агрегатов; · высокая скорость набора и снижения нагрузки в соответствии с суточным графиком; · надежность выдачи мощности (в пределе - до величины установленной мощности); · экономичность выдачи мощности. Естественно, что не все электростанции по своим технологическим особенностям или по условиям эксплуатации могут обладать такими свойствами. Режим работы электростанции тесно связан с режимом работы технологического оборудования. Тепловые конденсационные электрические станции (КЭС или ГРЭС) На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется в котле в энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат уголь, торф, горючие сланцы, а также газ и мазут. Особенности КЭС: · строятся по возможности ближе к источникам топлива; · удалены от потребителей электроэнергии, что определяет выдачу мощности, в основном, на высоких и сверхвысоких напряжениях и блочный принцип построения электростанций; · работают по неограниченному графику нагрузки, т.к. не зависят от выработки тепла; · станции низкоманевренные: в зависимости от типа турбины разворот и набор нагрузки занимает 3-10 часов; · имеют низкий к.п.д. (30-40%), т.к. 60-70% тепла не используется; · отрицательно влияют на окружающую среду: выбросы вызывают загрязнение атмосферы, изменяются температурные режимы водоемов – источников холодной воды. Теплофикационные электростанции – теплоэлектроцентрали (ТЭЦ) Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов теплом и электроэнергией. Являясь тепловыми электростанциями, они отличаются от КЭС использованием тепла отработавшего в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электроэнергии и тепла достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т.е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в городах и районах с большим потреблением тепла и электроэнергии. Специфика электрической части ТЭЦ определяется расположением электрических станций вблизи центров электрических нагрузок. В этих условиях часть мощности может выдаваться в местную сеть непосредственно на генераторном напряжении. С этой целью на электростанции создается обычно генераторное распределительное устройство (ГРУ). Избыток мощности выдается, как и в случае КЭС, в энергосистему. Особенности ТЭЦ: · строятся вблизи потребителей тепловой энергии; · большую часть выработанной электрической энергии выдают потребителям на генераторном напряжении; · схемы выдачи мощности выполняются как со сборными шинами 6-10кВ, так и блочными для выдачи части мощности в энергосистему на повышенном напряжении; · графики работы станций зависят от теплового потребления (т.е. такая станция не свободна в выдаче электрической энергии и не может вырабатывать мощность меньшую, чем это необходимо по условию выработки тепловой энергии); · станции низкоманевренные; · имеют относительно высокий к.п.д. (60-70%), что объясняется использованием отработанного пара для подогрева воды и отбором для нужд потребителей; · отрицательно влияют на окружающую среду: вызывают загрязнение атмосферы, изменяются тепловые режимы источников водоснабжения. Гидроэлектростанции (ГЭС) Для получения электроэнергии используется энергия водных потоков. Первичными двигателями на ГЭС являются гидротурбины, приводящие во вращение синхронные гидрогенераторы. · Как и КЭС, гидроэлектростанции обычно удалены от центров потребления, так как место их строительства определяется, в основном, природными условиями. Сток большинства рек неравномерен в течение года и по годам, поэтому там, где это возможно, сооружают водохранилища сезонного и многолетнего регулирования. · Электроэнергия, вырабатываемая ГЭС, выдается в энергосистему на высоких и сверхвысоких напряжениях. · Станции высокоманевренные, допускают частые пуски и остановы агрегатов, поэтому их стремятся использовать в пиковой и полупиковой части графика нагрузок, пользуясь возможностями суточного регулирования стока. · Технология производства электроэнергии на ГЭС довольно проста и легко поддается автоматизации. · Благодаря меньшим эксплуатационным расходам себестоимость электроэнергии на ГЭС, как правило, в несколько раз меньше, чем на тепловых электростанциях; к.п.д. около 85%. · Отличительной особенностью ГЭС является небольшое потребление электроэнергии на собственные нужды. Это объясняется отсутствием на ГЭС крупных механизмов в системе собственных нужд. · В маловодные годы ГЭС могут не обеспечивать требуемой выработки электроэнергии. · Для создания водохранилищ затапливаются полезные площади (пахотные земли и леса), а случалось - и исторические памятники, создаются препятствия для судоходства и естественного хода ценных пород рыб на нерест, большие площади водохранилищ изменяют микроклимат. · Сроки строительства крупных ГЭС больше, чем КЭС такой же мощности. Гидроаккумулирующие станции (ГАЭС) Эти электростанции имеют два бассейна – верхний и нижний с определенными перепадами высот между ними. В здании ГАЭС устанавливают обратимые гидроагрегаты. В часы минимума нагрузки энергосистемы генераторы ГАЭС переводят в двигательный режим, а турбины – в насосный. Тогда, потребляя мощность из сети, такие гидроагрегаты перекачивают воду по трубопроводу из нижнего бассейна в верхний. В период максимума нагрузок, когда в энергосистеме образуется дефицит генерируемой мощности, ГАЭС вырабатывает электроэнергию, работая в режиме обычной ГЭС. Особенности ГАЭС: · их применение помогает выравнивать график нагрузки энергосистемы, что повышает экономичность работы тепловых электростанций, наиболее экономично работающих при неизменной нагрузке; · сооружаются в энергосистемах, где нет ГЭС или их мощность недостаточна для покрытия пиков графиков нагрузок, и где позволяют природные условия; · выполняются из блоков, выдающих энергию на повышенном напряжении; · станции надежны и экономичны в работе; к.п.д. 70-80%; не требуют большого числа обслуживающего персонала Атомные электростанции (АЭС) На атомных паротурбинных электростанциях в качестве источника энергии используют тепловую энергию ядерной реакции. В качестве топлива используются тепловыделяющие элементы из природного или слабообогащенного урана, в качестве замедлителя реакции – графит, а в качестве теплоносителя – вода. Нагретая вода из активной зоны реактора поступает по замкнутому первому контуру в парогенераторы, где отдает свое тепло воде второго контура, которая превращается в пар, приводящий в движение турбину. · Ядерное топливо обладает очень высокой теплотворной способностью, поэтому АЭС особенно эффективны в районах, бедных топливными ресурсами, и могут сооружаться в любом географическом районе при наличии источника водоснабжения. · АЭС выгодно оснащать энергоблоками большой мощности, тогда по своим технико-экономическим показателям они не уступают КЭС, а в ряде случаев и превосходят их; к.п.д.35-40%. · Станции низкоманевренны, поэтому их используют в базовой части графика нагрузки энергосистемы · АЭС, так же как и КЭС, стоятся по блочному принципу как в тепломеханической, так и в электрической части. · На АЭС предъявляются повышенные требования к радиационной защите и надежности оборудования. · Существуют проблемы с захоронением отработанного топлива. Газотурбинные электростанции (ГТУЭС) Топливо (газ, дизельное горючее) подается в камеру сгорания, туда же компрессором нагнетается сжатый воздух. Горячие продукты сгорания отдают свою энергию газовой турбине, которая вращает компрессор и синхронный генератор. Запуск установки осуществляется при помощи разгонного двигателя и длится 1-2 мин, в связи с чем газотурбинные установки (ГТУ) отличаются высокой маневренностью и пригодны для покрытия пиков нагрузки в энергосистемах. Для повышения экономичности газовых турбин разработаны парогазовые установки (ПГУ). В них топливо сжигается в топке парогенератора, пар из которого направляется в паровую турбину. Продукты сгорания из парогенератора направляются в газовую турбину. Таким образом, ПГУ имеет два электрических генератора, приводимых во вращение один – газовой турбиной, другой – паровой турбиной. Недостатком является выброс отработанного газа в атмосферу.
|