Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. 1. Определить область, заданную неравенствами: 2£ Im(z-i)£3





1. Определить область, заданную неравенствами: 2£ Im(z-i)£3. Перейдем к декартовым координатам, получим 2£ y-1£3Þ3£ y£ 4. Это область, заключенная в полосе между прямыми y=3 и y=4.

2. Определить область, заданную неравенством I z-i I<I z+3 I. Перейдем к декартовым координатам, получим

Это часть плоскости, расположенная выше прямой y=-3x-4.

3. Определить область, заданную неравенством I z-3+2i I>2. Это часть плоскости, расположенная вне круга

 

Правило умножения двух комплексных чисел позволяет получить замечательное соотношение, открытое английским математиком А. де-Муавром (1667–1754).

Найдем квадрат комплексного числа z = r(cos j + i sin j), т.е. результат произведения этого числа на само себя:

z2 = z•z = r(cos j + i sin j)•r(cos j + i sin j).

По правилу умножения двух комплексных чисел имеем: z2 = r2(cos j + i sin j)2 = r2(cos 2j + i sin 2j).

Повторяя n раз операцию возведения в степень числа z, мы получим формулу n-ой степени числа z:

zn = rn(cos nj + i sin nj),

где n – натуральное число.

Методом математической индукции можно доказать эту формулу. Она представляет собой обобщение формулы, открытой Муавром. Муавр открыл ее для случая, когда модуль комплексного числа z равен 1. Формула Муавра имеет вид:

(cos j + i sin j)n = cos nj + i sin nj,

где n Î N.

С помощью формулы Муавра можно вывести многие полезные соотношения, в частности, между тригонометрическими выражениями.

Формула Муавра позволяет найти значения корней любой (n-й) степени в поле комплексных чисел. Под корнем n-й степени из числа z понимают такое число a, n-я степень которого равна z: an = z. Ограничимся рассмотрением вопроса об извлечении корня n-ой степени из 1 в поле комплексных чисел. Другими словами, будем рассматривать вопрос о решении уравнения zn = 1, где n Î N в поле комплексных чисел. Например, корень квадратный из числа 1 имеет два значения: 1 и – 1. Действительно, 12 = 1 и (– 1)2 = 1. Корень четвертой степени из числа 1 в поле комплексных чисел имеет четыре значения: два действительных, 1 и – 1, и два мнимых, i и – i. Этот факт можно установить проверкой: 14 = 1 и (– 1)4 = 1; i4 = 1 и (– i)4 = 1.

Эти два примера наводят на предположение о том, что корень кубический из 1 в поле комплексных чисел должен иметь 3 значения; корень пятой степени из 1 должен иметь пять значений и т.д. Корень n-й степени из числа 1 в поле комплексных чисел должен иметь n значений.

Это предположение оказывается верным. Воспользовавшись формулой Муавра, можно доказать, что уравнение zn = 1 в поле комплексных чисел имеет ровно n решений, т. е. корень n-й степени из числа z в поле комплексных чисел имеет ровно n значений. Эти значения корня изображаются вершинами правильного n-угольника, вписанного в единичную окружность, причем точка (0; 1) является одной из вершин этого многоугольника.

При помощи формулы Эйлера можно определить функции и следующим образом:

,

.

Далее можно ввести понятие тригонометрических функций комплексной переменной. Пусть , тогда:

,

.

Известное тождество Эйлера, связывающее пять фундаментальных математических констант:

является частным случаем формулы Эйлера при .

Благодаря формуле Эйлера появилась так называемая тригонометрическая и показательная запись комплексного числа: .

Также значительным следствием можно считать формулы возведения комплексного числа в произвольную степень: , . Геометрический смысл данной формулы следующий: при возведении числа в степень его расстояние до центра возводится в степень , а угол поворота относительно оси увеличивается в раз.

Формула возведения в степень верна не только для целых , но и для вещественных. В частности, комплексная запись числа позволяет находить корни любой степени из любого комплексного числа, что и используется при доказательстве основной теоремы алгебры: «Многочлен степени имеет ровно комплексных корней».







Дата добавления: 2015-09-07; просмотров: 751. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия