Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Однородная система уравнений





Предложение 15. 2 Однородная система уравнений (15.7) всегда является совместной. Доказательство. Для этой системы набор чисел , , , является решением. В этом разделе мы будем использовать матричную запись системы: . Предложение 15. 3 Сумма решений однородной системы линейных уравнений является решением этой системы. Решение, умноженное на число, тоже является решением. Доказательство. Пусть и служат решениями системы . Тогда и . Пусть . Тогда Так как , то -- решение. Пусть -- произвольное число, . Тогда Так как , то -- решение. Следствие 15. 1 Если однородная система линейных уравнений имеет ненулевое решение, то она имеет бесконечно много различных решений. Действительно, умножая ненулевое решение на различные числа, будем получать различные решения. Определение 15. 5 Будем говорить, что решения системы образуют фундаментальную систему решений, если столбцы образуют линейно независимую систему и любое решение системы является линейной комбинацией этих столбцов. Определение 15. 6 Пусть -- фундаментальная система решений однородной системы . Тогда выражение где -- произвольные числа, будем называть общим решением системы . Из определения фундаментальной системы решений следует, что любое решение однородной системы может быть получено из общего решения при некоторых значениях . И наоборот, при любых фиксированных числовых значениях из общего решения получим решение однородной системы. Как находить фундаментальную систему решений мы увидим позже, в разделе "Алгоритм нахождения решений произвольной системы линейных уравнений (метод Гаусса)". Теорема 15. 3 Пусть -- фундаментальная система решений однородной системы . Тогда , где -- число неизвестных в системе. Доказательство читатель может найти, например, в [1].

 







Дата добавления: 2015-09-07; просмотров: 459. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия