Вычитание векторов
Вектор называется противоположным вектору , если их сумма равна нулевому вектору: . Противоположный вектор имеет длину , коллинеарен и противоположно направлен вектору (рис.1.8,а,б). Нулевой вектор является противоположным самому себе.
Разностью векторов и называется сумма вектора с вектором , противоположным вектору :
Для нахождения разности векторов и приложим к произвольной точке векторы , а также вектор , противоположный вектору (рис.1.9,а). Искомую разность находим по правилу параллелограмма:
Для нахождения разности проще использовать правило треугольника (рис. 1.9,6). Для этого прикладываем к произвольной точке векторы . Вектор при этом равен искомой разности .
Вычитание векторов — действие, обратное сложению — можно определить также следующим образом: разностью векторов и называется такой вектор , который в сумме с вектором дает вектор (рис.1.9,в), т.е. разность — это решение уравнения .
|