Уравнения прямой в пространстве
Векторное параметрическое уравнение прямой в пространстве: где — радиус-вектор некоторой фиксированной точки M0, лежащей на прямой, — ненулевой вектор, коллинеарный этой прямой, — радиус-вектор произвольной точки прямой.
Параметрическое уравнение прямой в пространстве:
где — координаты некоторой фиксированной точки M0, лежащей на прямой; — координаты вектора, коллинеарного этой прямой. Каноническое уравнение прямой в пространстве: где — координаты некоторой фиксированной точки M0, лежащей на прямой; — координаты вектора, коллинеарного этой прямой.
Общее векторное уравнение прямой в пространстве: Поскольку прямая является пересечением двух различных непараллельных плоскостей, заданных соответственно общими уравнениями: и то уравнение прямой можно задать системой этих уравнений:
|