Умножение вектора на число
Произведением ненулевого вектора а на действительное число называется вектор , удовлетворяющий условиям:
1) длина вектора равна , т.е. ;
2) векторы и коллинеарные ;
3) векторы и одинаково направлены, если , и противоположно направлены, если .
Произведение нулевого вектора на любое число считается (по определению) нулевым вектором: ; произведение любого вектора на число нуль также считается нулевым вектором: . Из определения произведения следует, что:
а) при умножении на единицу вектор не изменяется: ;
б) при умножении вектора на получается противоположный вектор: ;
в) деление вектора на отличное от нуля число сводится к его умножению на число , обратное .
г) при делении ненулевого вектора на его длину, т.е. при умножении на число получаем единичный вектор, одинаково направленный с вектором .
Действительно, длина вектора равна единице: .
Вектор коллинеарен и одинаково направлен с вектором , так как ;
д) при умножении единичного вектора на число получаем коллинеарный ему вектор, длина которого равна .
На рис.1.10 изображены векторы, получающиеся в результате умножения данного вектора на и , а также противоположный вектор .
|