Сложение векторов. Пусть даны два вектора и
Пусть даны два вектора и . Приложим вектор к точке (концу вектора ) и получим вектор (рис.1.7,а; здесь и далее равные векторы отмечены одинаковыми засечками). Вектор называется суммой векторов и и обозначается . Это нахождение суммы называется правилом треугольника.
Сумму двух неколлинеарных векторов и можно найти по правилу параллелограмма. Для этого откладываем от любой точки векторы и , а затем строим параллелограмм (рис. 1.7,6). Диагональ параллелограмма определяет сумму: .
Для нахождения суммы нескольких векторов можно построить ломаную из равных им векторов. Тогда замыкающий вектор, соединяющий начало первого вектора ломаной с концом последнего ее вектора, равен сумме всех векторов ломаной. На рис.1.7,в изображена сумма четырех векторов . Таким способом (правило ломаной) можно сложить любое конечное число векторов. Заметим, что сумма векторов не зависит от точек приложения слагаемых и от порядка суммирования. Например, "выстраивая цепочку" векторов для суммы в виде , получим вектор, равный вектору . Если ломаная получилась замкнутой, то сумма равна нулевому вектору.
|