Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тела вращения




Телами вращения называют тела, ограниченные либо поверхностью вращения, либо поверхностью вращения и плоскостью (рисунок 134). Под поверхностью вращения понимают поверхность, полученную от вращения какой-либо линии (ABCDE), плоской или пространственной, называемой образующей, вокруг неподвижной прямой (i) — оси вращения.

Рисунок 134

 

Любая точка образующей поверхности вращения описывает окружность, расположенную в плоскости, перпендикулярной к оси вращения – параллель, следовательно, плоскость, перпендикулярная к оси вращения, всегда пересекается с поверхностью вращения по окружности. Наибольшая параллель — экватор. Наименьшая параллель — горло (горловина).

Плоскости, проходящие через ось вращения, называют меридиональными плоскостями.

На комплексном чертеже изображение тел вращения выполняется посредством изображения ребер оснований и линий очерков поверхности.

Линии пересечения меридиональных плоскостей с поверхностью называют меридианами.

Меридиональная плоскость, параллельная плоскости проекций, называется главной меридиональной плоскостью. Линия ее пересечения с поверхностью — главный меридиан.

Прямой круговой цилиндр. Прямым круговым цилиндром (рисунок 135) называют тело, ограниченное цилиндрической поверхностью вращения и двумя кругами — основаниями цилиндра, расположенными в плоскостях, перпендикулярных к оси цилиндра. Цилиндрической поверхностью вращения называется поверхность, полученная при вращении прямолинейной образующей AA1 вокруг параллельной ей неподвижной прямой - i (ось вращения). Размерами, характеризующими прямой круговой цилиндр, являются его диаметр и высота l (расстояние между основаниями цилиндра).

 

а б в

Рисунок 135

 

Прямой круговой цилиндр можно также рассматривать как тело, полученное при вращении какого-либо прямоугольника ABCD вокруг одной из его сторон, например, ВС (рисунок 136). Сторона ВС является осью вращения, а сторона AD — образующей цилиндра. Две другие стороны обозначат основания цилиндра.

 

 

Рисунок 136

 

Прямоугольника АВ и CD при вращении образуют круги — основания цилиндра.







Дата добавления: 2015-10-01; просмотров: 657. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.002 сек.) русская версия | украинская версия