Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение проекций цилиндра.






Построение горизонтальной и фронтальной проекций цилиндра начинают с изображения основания цилиндра, т. е. двух проекций окружности (см. рисунок 135, б). Так как окружность расположена на плоскости Н, то она проецируется на эту плоскость без искажения. Фронтальная проекция окружности представляет собой отрезок горизонтальной прямой линии, равный диаметру окружности основания.

После построения основания на фронтальной проекции проводят две очерковые образующие (крайние образующие) и на них откладывают высоту цилиндра. Проводят отрезок горизонтальной прямой, который является фронтальной проекцией верхнего основания цилиндра (рисунок 135, в).

Определение недостающих проекций точек А и В, расположенных на поверхности цилиндра, по заданным фронтальным проекциям в данном случае затруднений не вызывает, так как вся горизонтальная проекция боковой поверхности цилиндра представляет собой окружность (рисунок 137, а). Следовательно, горизонтальные проекции точек А и В можно найти, проводя из данных точек A'' и B'' вертикальные линии связи до их пересечения с окружностью в искомых точках A' и B'.

Профильные проекции точек А и В строят также при помощи вертикальных и горизонтальных линий связи.

Изометрическую проекцию цилиндра вычерчивают, как показано на рисунок 137, б.

В изометрии точки А и В строят по их координатам. Например, для построения точки В от начала координат О по оси x откладывают координату ∆x, а затем через ее конец проводят прямую, параллельную оси у, до пересечения с контуром основания в точке 2. Из этой точки параллельно оси z проводят прямую, на которой откладывают координату ZB, точки В.

 

 

а б

Рисунок 137

 

Прямой круговой конус. Прямым круговым конусом (рисунок 138) называют тело, ограниченное конической поверхностью вращения и кругом, расположенным в плоскости, перпендикулярной к оси конуса. Коническая поверхность получается при вращении прямолинейной образующей SA (рисунок 138, а), проходящей через неподвижную точку S на оси вращения i и составляющей с этой осью некоторый постоянный угол. Точка S называется вершиной конуса, а коническая поверхность — боковой поверхностью конуса. Размер прямого кругового конуса характеризуют диаметр его основания DK и высота Н.

а) б) в)

Рисунок 138

 

Прямой круговой конус можно также рассматривать как тело, полученное при вращении прямоугольного треугольника SAB вокруг его катета SB (рисунок 139). При таком вращении гипотенуза описывает коническую поверхность, а катет АВ — круг, т. е. основание конуса.

 

Рисунок 139

 







Дата добавления: 2015-10-01; просмотров: 2504. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2022 год . (0.024 сек.) русская версия | украинская версия