Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение точек на поверхности конуса





Если на поверхности конуса задана одна проекция точки А (например, фронтальная проекция на рисунке 140), то две другие проекции этой точки определяют с помощью вспомогательных линий — образующей, расположенной на поверхности конуса и проведенной через точку А, или окружности, расположенной в плоскости, параллельной основанию конуса.

а б в

Рисунок 140

 

В первом случае (рисунок 140, а) через точку A проводят фронтальную проекцию 1''S'' вспомогательной образующей. Пользуясь вертикальной линией связи, проведенной из точки 1, расположенной на фронтальной проекции окружности основания, находят горизонтальную проекцию 1' этой образующей, на которой при помощи линии связи, проходящей через A', находят искомую точку A.

Во втором случае (рисунок 140, б) вспомогательной линией, проходящей через точку А, будет окружность, расположенная на конической поверхности и параллельная плоскости Н - параллель. Фронтальная проекция этой окружности изображается в виде отрезка 1''1'' горизонтальной прямой, величина которого равна диаметру вспомогательной окружности. Искомая горизонтальная проекция A' точки А находится на пересечении линии связи, опущенной из точки A', с горизонтальной проекцией вспомогательной окружности.

Если заданная фронтальная проекция 1'' точки 1 расположена на контурной (очерковой) образующей, то горизонтальная проекция точки находится без вспомогательных линий.

В изометрической проекции точку А, находящуюся на поверхности конуса, строят по трем координатам (см. рисунок 140, в): DX, DY и ZА. Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям. В рассматриваемом примере от точки О по оси х отложена координата DX; из конца ее параллельно оси у проведена прямая, на которой отложена координата DY; из конца отрезка, параллельно оси z проведена прямая, на которой отложена координата ZА. В результате построений получим искомую точку А.

Шар. Шаром (рисунок 141) называют тело, полученное при вращении полукруга ABC (образующая) вокруг его диаметра АС (ось вращения), а поверхность, которую при этом описывает дуга ABC, называется шаровой или сферической. Шар относится к телам, ограниченным только поверхностью вращения.

 

 

Рисунок 141

 

Шаровая (сферическая) поверхность является геометрическим местом точек, равноудаленных от одной точки О, называемой центром шара. Если шар рассечь горизонтальными плоскостями, то в сечении получатся окружности – параллели. Наибольшая из параллелей имеет диаметр равный диаметру шара. Такая окружность называется экватором. Окружности же, получаемые в результате сечений шара плоскостями, проходящими через его ось вращения, называются меридианами.







Дата добавления: 2015-10-01; просмотров: 1796. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия