Кодирование. Аргументы в пользу кодирования бинарным алфавитом
Аргументы в пользу кодирования бинарным алфавитом: · обеспечивает лучший поиск с помощью гиперплоскостей, т. к. предоставляет максимальное их количество. Например, при кодировании значений для бинарного алфавита количество гиперплоскостей будет , а при использовании, четырехзначного алфавита – . · для встречаемости каждого символа в каждой позиции требуется меньший размер популяции Даже для двух строк, есть вероятность, что на каждой позиции в популяции есть и 0, и 1. Если же алфавит большей мощности, то до применения мутации большая часть пространства поиска будет недоступна с точки зрения кроссовера, после применения мутации станет недоступна другая часть. Однако небинарные алфавиты зачастую обеспечивают более наглядное представление решений задачи. Для большинства функций ГА будут работать лучше при кодировании параметров кодом Грея, а не прямым бинарным кодом. Это связано с тем, что расстояние Хэмминга между битовыми представлениями данных может и не отражать близость в привычном смысле – например, числа 7 и 8 различаются на 4 бита. Бинарное кодирование добавляет дополнительные разрывы, что осложняет поиск. Пример: пусть требуется минимизировать функцию Если в начальной популяции преобладали хорошие отрицательные решения, то скорее всего мы придём к решению −1 = 11…1. Но достигнуть глобального минимума 00…0 будет практически невозможно, поскольку изменение любого бита будет приводить к ухудшению решения. При кодировании кодом Грея такой проблемы не возникает. Иногда применяется кодирование с плавающей точкой, которое тоже является более удачным, чем прямое бинарное, в силу того, что в некоторых случаях более правильно отражает понятие схожести параметров особей.
|