Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения прямой в пространстве


Эпифеноменальный -сопутствующий

Эшелонирование – создание интервалов

Так как каждая прямая всегда может быть помещена в некоторую плоскость и при пересечении двух плоскостей образуется прямая, то в аналитической геометрии прямую в пространстве принято задавать как пересечение двух плоскостей.

Итак, пусть и – уравнения любых двух различных плоскостей, содержащих прямую . Тогда координаты любой точки прямой удовлетворяют одновременно обоим уравнениям, т.е. являются решениями системы

(1)

Систему (1) называют общими уравнениями прямой в пространстве. Так как через любую прямую в пространстве проходит множество плоскостей, то любую прямую можно задать ее общими уравнениями и не единственным образом.

Недостатком задания прямой общими уравнениями является то, что по их виду ничего нельзя сказать о расположении прямой в пространстве. При решении задач удобнее использовать другие, более наглядные формы записи уравнений прямой – параметрические или канонические уравнения.

Получим параметрические и канонические уравнения прямой в пространстве, решив следующую задачу.

ЗАДАЧА 1. Записать уравнение прямой в пространстве, проходящей через точку , параллельно вектору .

Также, как и для прямой на плоскости, вектор, параллельный прямой в пространстве, называют направляющим вектором этой прямой.

Пусть – текущая точка прямой. Обозначим через и – радиус-векторы точек и .

Рассмотрим векторы и . По условию задачи они параллельны.

Следовательно, существует такое число ( называют параметром), что

,

, (2*)

или, в координатной форме,

(2)

Уравнение (2*) и систему уравнений (2) называют параметрическими уравнениями прямой в пространстве (в векторной и координатной форме соответственно).

Если в задаче 1 вектор не параллелен ни одной из координатных плоскостей (т.е. если , и ), то из уравнений системы (2) можно выразить параметр :

, ,

и заменить систему (2) одним равенством вида:

. (3)

где – координаты некоторой точки на прямой; , , – координаты направляющего вектора прямой.

Уравнения (3) называют каноническими уравнениями прямой в пространстве.

Частным случаем канонических уравнений являются уравнения прямой, проходящей через две заданные точки.

Действительно, пусть прямая проходит через две точки и . Тогда вектор

является ее направляющим вектором, и канонические уравнения этой прямой будут иметь вид

. (4)

Уравнения (4) называют уравнениями прямой, проходящей через две заданные точки и .


 




<== предыдущая лекция | следующая лекция ==>
Соловьёвско-русский словарь | МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Так как каждая прямая всегда может быть помещена в некоторую плоскость и при пересечении двух плоскостей образуется прямая

Дата добавления: 2015-10-01; просмотров: 352. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия