Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нахождение основных элементов многогранников





 

       
  Решите задачу Решите задачу Решите задачу
* Основание прямой призмы – прямоугольный треугольник, катеты которого равны 7 см и 24 см. Угол между диагональю большей боковой грани и плоскости основания призмы 45º. Найти высоту призмы. Через вершину правильной шестиугольной пирамиды и диаметр окружности описанной около ее основания проведено сечение. Вычислить площадь сечения, если сторона оснований пирамиды равное 4 см, а ее высота 5 см. Основание прямой призмы – ромб со стороной 8 см и острым углом 60º. Высота призмы 12 см. Вычислить длины диагоналей призмы.
  Площадь основания правильной четырех угольной призмы 625 см2. Высота призмы 14 см. Найти площадь ее диагонального сечения. Через вершину основания правильной треугольной пирамиды и апофему противолежащей боковой грани проведено сечение. Найти площадь сечения, если длина стороны основания 12 м, а высота пирамиды 2 м. Набольшая диагональ правильной шестиугольной призмы равна 12 см, она наклонная к плоскости основания под углом 60º. Вычислить длину стороны основания призмы.
  Диагональ боковой грани правильной треугольной призмы равна 6 дм и наклонная к плоскости основания под углом 30º.Найти площадь основание призмы. Через вершину правильной шестиугольной пирамиды и диаметр окружности описанной около ее основания проведено сечение. Вычислить площадь сечения, если сторона оснований пирамиды равное 4 см, а ее высота 5 см. Через вершину правильной шестиугольной пирамиды и диаметр окружности описанной около ее основания проведено сечение. Вычислить площадь сечения, если сторона оснований пирамиды равное 4 см, а ее высота 5 см.
  Набольшая диагональ правильной шестиугольной призмы равна 12 см, она наклонная к плоскости основания под углом 60º. Вычислить длину стороны основания призмы. Через вершину и диагональ основания правильной четырех угольной пирамиды проведено сечение. Вычислите его площадь, если сторона основания равное 8 см, а боковое ребро пирамиды 5 см. Площадь основания правильной четырех угольной призмы 625 см2. Высота призмы 14 см. Найти площадь ее диагонального сечения.
  Основание прямой призмы – ромб со стороной 8 см и острым углом 60º. Высота призмы 12 см. Вычислить длины диагоналей призмы. Через вершину и середины двух соседних сторон основания правильной четырехугольной пирамиды поведено сечение. Найти его периметр, если сторона основания пирамиды 8м,а боковое ребро5м. Все ребра правильной четырехугольной пирамиды равны 10 см. Найти периметр сечения, содержащего точки В, D и середину бокового ребра КС пирамиды KABCD.
       
  Основание прямой пирамиды – прямоугольный треугольник, катеты которого равны 7 см и 24 см. Угол между диагональю большей боковой грани и плоскости основания призмы 45º. Найти высоту призмы. Сторона основания правильной четырехугольной пирамиды равно 6 м угол между боковым ребром и плоскостью основания 30º. Найти площадь сечения проведенного через два боковых ребра, не лежащих в одной грани. Основание прямой призмы – ромб со стороной 8 см и острым углом 60º. Высота призмы 12 см. Вычислить длины диагоналей призмы.
  Основание прямой призмы – равнобедренный треугольник АВС, где АВ=ВС=3. Высота призмы 6 см. Диагональ боковой грани с ребром ВС равна 15 см. Найти площадь основания призмы. Все ребра правильной четырехугольной пирамиды равны 10 см. Найти периметр сечения, содержащего точки В, D и середину бокового ребра КС пирамиды KABCD. Сторона основания правильной четырехугольной пирамиды равно 6 м угол между боковым ребром и плоскостью основания 30º. Найти площадь сечения проведенного через два боковых ребра, не лежащих в одной грани.
  Площадь основания правильной четырехугольной призмы 625 см2. Высота призмы 14 см. Найти площадь ее диагонального сечения. Через вершину и диагональ основания правильной четырех угольной пирамиды проведено сечение. Вычислите его площадь, если сторона основания равное 8 см, а боковое ребро пирамиды 5 см. Основание прямой призмы – прямоугольный треугольник, катеты которого равны 7 см и 24 см. Угол между диагональю большей боковой грани и плоскости основания призмы 45º. Найти высоту призмы.
  Диагональ боковой грани правильной треугольной призмы равна 6 дм и наклонная к плоскости основания под углом 30º.Найти площадь основание призмы. Через вершину и середины двух соседних сторон основания правильной четырехугольной пирамиды поведено сечение. Найти его периметр, если сторона основания пирамиды 8 м, а боковое ребро 5 м. Через вершину и диагональ основания правильной четырех угольной пирамиды проведено сечение. Вычислите его площадь, если сторона основания равное 8 см, а боковое ребро пирамиды 5 см.
  Набольшая диагональ правильной шестиугольной призмы равна 12 см, она наклонная к плоскости основания под углом 60º. Вычислить длину стороны основания призмы. Сторона основания правильной четырехугольной пирамиды равно 6 м угол между боковым ребром и плоскостью основания 30º. Найти площадь сечения проведенного через два боковых ребра, не лежащих в одной грани. Диагональ боковой грани правильной треугольной призмы равна 6 дм и наклонная к плоскости основания под углом 30º.Найти площадь основание призмы.
  Основание прямой призмы – ромб со стороной 8 см и острым углом 60º. Высота призмы 12 см. Вычислить длины диагоналей призмы. Все ребра правильной четырехугольной пирамиды равны 10 см. Найти периметр сечения, содержащего точки В, D и середину бокового ребра КС пирамиды KABCD. Все ребра правильной четырехугольной пирамиды равны 10 см. Найти периметр сечения, содержащего точки В, D и середину бокового ребра КС пирамиды KABCD.






Дата добавления: 2015-10-01; просмотров: 890. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия