Решение треугольников
|
|
|
|
|
| | Решите прямоугольный треугольник
| Решите прямоугольный треугольник
| Решите треугольник
| Решите треугольник
| Решите треугольник
| *
| С=90о
А=34о12’
c=29,3
| C=90о
a=3,2
c=8,7
| b=3,29
a=5,78
C=111о7’
| b=49,7
A=34о51’
C=48о32’
| a=5,7
b=3,2
c=6,8
|
| C=90о
B=64о39’
c=459
| a=984
b=321
C=90о
| b=34,9
c=91,3
A=34о7’
| c=0,284
C=121о47’
A=12о36’
| a=2,1
b=2,7
c=3,4
|
| c=0,345
C=90о
A=49о15’
| a=2,1
b=9,1
C=90о
| B=17о25’
a=0,34
c=2,98
| a=34,9
A=19о54’
B=24о13’
| a=1,35
b=2,72
c=1,94
|
| B=26о37’
C=90о
a=43,1
| a=984
b=321
C=90о
| a=0,284
c=1,315
B=97о34’
| a=4,7
B=19о39’
C=27о48’
| a=1,28
b=3,06
c=2,18
|
| B=46о21’
C=90о
b=39,1
| a=94
b=31
C=90о
| b=34,12
c=17,47
A=51о59’
| b=49,7
A=34о51’
C=48о32’
| a=90,24
b=15,13
c=76,12
|
| C=90о
A=13о58’
c=2,133
| a=0,934
b=2,317
C=90о
| b=3,219
a=5,784
C=111о7’
| a=34,9
A=109о54’
B=24о13”
| a=5,77
b=3,12
c=6,84
|
| B=36о19’
C=90о
c=9,243
| a=2,13
b=9,19
C=90о
| B=17о19’
a=0,34
c=2,98
| a=34,9
A=109о54’
B=15о13’
| a=1,315
b=2,712
c=1,924
|
| A=39о47’
C=90о
a=364
| b=24,39
c=81,13
C=90о
| b=34,9
c=91,3
A=34о7’
| c=3,24
B-141о12’
A=11о53’
| a=1,284
b=3,061
c=2,181
|
| C=90о
B=64о39’
c=459
| C=90о
a=0,9
b=1,3
| B=17о1’
a=0,34
c=2,98
| b=49,7
A=34о51’
C=48о32’
| a=1,315
b=2,712
c=1,924
|
| C=90о
B=64о39’
c=459
| C=90о
b=21,14
a=91,29
| B=7о19’
a=0,34
c=2,98
| c=3,24
B-14о12’
A=11о3’
| a=1,315
b=2,712
c=1,924
|
| B=26о37’
C=90о
a=43,1
| С=90о
а=0,457
с=1,381
| B=25о19’
a=0,34
c=2,98
| a=34,9
A=109о54’
B=24о13’
| a=5,27
b=3,22
c=6,34
|
Преобразования тригонометрических выражений
|
|
|
|
|
|
| | По значению одной из тригонометрических функций найдите значения трёх остальных
| Упростите
| Вычислите
| Докажите тождество
| Определите, верно ли равенство
| Преобразуйте в произведение
| *
| а) , б)
|
| а) сos5850;б) tg
|
| sin5cos7– sin10cos2=
-sin5cos3
|
|
| а) , б)
|
| а) sin91350;б)ctg
|
| cos4cos6 – sin1sin3=
cos7cos3
|
|
| а) , б)
|
| а) tg13950;б) sin
|
| sin1sin3 - cos4cos6=
- cos7cos3
|
|
| а) , б)
|
| а) ctg6300;б)cos
|
| cos6cos4 – sin3sin1=
cos3cos7
|
|
| а) , б)
|
| а) сos6750;б) tg
|
| sin3sin1 – cos6cos4=
- cos7cos3
|
|
| а) , б)
|
| а) sin4950;б) ctg
|
| cos4cos6 - sin1sin3=
cos7cos3
|
|
| а) , б)
|
| а) tg7650;б) sin
|
| cos6cos4 – sin3sin1=
cos3cos7
|
|
| а) , б)
|
| а) ctg8100;б) cos
|
| sin1sin3 - cos4cos6=
- cos7cos3
|
|
| а) , б)
|
| а) сos9000;б) tg
|
| sin3sin1 – cos6cos4=
- cos7cos3
|
|
| а) , б)
|
| а) sin3950;б) ctg
|
| sin5cos7-sin10cos2=
- sin5cos3
|
|
| а) , б)
|
| а) сos5750;б)cos
|
| sin3sin1 – cos6cos4=
- cos7cos3
|
|
Решение тригонометрических уравнений
|
|
|
|
|
|
|
| Решите уравнение
| Решите уравнение
| Решите уравнение
| Решите уравнение
| Решите уравнение
| Решите уравнение
| *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...
|
Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...
|
Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...
|
Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...
|
Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов:
1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха)
2. опухоли большого дуоденального сосочка...
Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва.
Сосудистый шов применяется для восстановления магистрального кровотока при лечении...
Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность
· Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...
|
Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...
Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...
Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...
|
|