Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой.
Также односторонние пределы , говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу. Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси влево (или вправо) на бесконечность, то «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близко приближаться к оси . Таким образом, ось является горизонтальной асимптотой для графика функции , если «икс» стремится к плюс или минус бесконечности. Функция является нечётной, а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: . График функции вида() представляют собой две ветви гиперболы. Если, то гипербола расположена в первой и третьей координатных четвертях (см. рисунок выше). Если, то гипербола расположена во второй и четвертой координатных четвертях. Указанную закономерность места жительства гиперболы нетрудно проанализировать с точки зрения геометрических преобразований графиков. Пример 3 Построить правую ветвь гиперболы Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело: Выполним чертеж:
|