Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Магнитные и электрические свойства пленок Co





С помощью метода динамической магнитно-силовой микроскопии (МСМ) (кантилевер колеблется с резонансной частотой) визуализировано пространственное распределение по поверхности металлических пленок производной магнитной силы, которая пропорциональна второй производной магнитного поля. Цветовой контраст, наблюдаемый на МСМ-изображениях, свидетельствует о наличии доменной структуры. Следует отметить, что из-за сравнительно большой высоты холмов топография поверхности пленок частично оказывает влияние на характер МСМ-изображений. Как видно из рисунка 19, пленки кобальта, полученные при температуре испарителя 120 0С, характеризуются слабо выраженной доменной структурой.

 

 

               
 
а
   
б
 
 
   
в
     
г
 
 
 
д
   
е
 

 


 

 


 

 


Рисунок 19 - Морфология поверхности (а, в, д) и магнитная структура (б, г, е) пленок Co, нанесенных на подложку Si при температуре испарителя 120 0С и температурах подложки 310 (а, б) и 350 (в, г) и 420 0С (д, е); атомно-силовая микроскопия

Помимо отсутствия доменной структуры невысокие магнитные свойства у пленок Co подтверждают также петли гистерезиса, измеренные в направлении оси легкого намагничивания (рисунок 20).

               
   
а
 
б
 
 
в
   
г

 


 

 

Рисунок 20 - Петли гистерезиса пленок Co, нанесенных на подложку Si при температуре испарителя 1200С и температурах подложки 310 (а), 330 (б), 350 (в) и 4200С (г)

Как видно из рисунка 20, пленки Co, полученные при температуре подложки 310 0С характеризуются сравнительно узкой петлей гистерезиса с низкими значениями остаточной намагниченности и намагниченности насыщения. Повышение температуры испарителя до 330 0С способствует двукратному росту намагниченностей пленок, однако их величина остается по-прежнему невысокой. При этом слегка увеличивается коэрцитивная сила, и петля гистерезиса становится более широкой. Дальнейшее повышение температуры подложки до 350 0С приводит к резкому уменьшению всех магнитных характеристик пленок Co и к сужению петли гистерезиса. Однако при температуре подложки, равной 420 0С, исследуемые пленки характеризуются высокими значениями коэрцитивной силы, остаточной намагниченности и намагниченности насыщения, а также широкой петлей гистерезиса.

Повышение температуры испарителя до 130 0С способствует существенному росту величин остаточной намагниченности и намагниченности насыщения пленок Co (Рисунок 21).

 


Рисунок 21 – Петли гистерезиса тонких пленок Co, нанесенных при температуре испарителя T исп = 130 °С и температурах подложки 300 (а), 310 (б), 320 (в), 330 (г) и 340 0С (д)

Как видно из рисунка 21, максимальные значения остаточной намагниченности и намагниченности насыщения наблюдаются в пленках Co, осажденных при температуре подложки Тподл = 330 0С. Коэрцитивная сила пленок Co, полученных при температуре испарителя 130 0С, остается в целом постоянной и составляет около 6500 А/м. Однако коэрцитивная сила пленок Co, полученных при температуре подложки 320 0С, характеризуется более высокой величиной. Стоит отметить, что повышение температуры испарителя со 120 до 130 0С привело также к уширению петли гистерезиса исследуемых пленок.

Дальнейший рост температуры испарителя вновь приводит к уменьшению магнитных характеристик пленок Co (рисунок 22, в, г). Как видно из рисунка 22, пленки Co, полученные в интервале температур испарителя от 135 до 145 0С характеризуются пониженными значениями остаточной намагниченности и намагниченности насыщения по сравнению с пленками, осажденными при температуре испарителя 130 0С. При этом коэрцитивная сила данных пленок несущественно зависит от температуры испарителя и варьируется в пределах 6500-7500 А/м. Повышение температуры испарителя до 150 0С способствует четырехкратному росту намагниченностей пленок Co (рисунок 22, д), однако коэрцитивная сила данных пленок остается неизменной. Последующее увеличение температуры испарителя до 155 0С одновременно сохраняет рост намагниченностей и способствует резкому уменьшению величины коэрцитивной силы исследуемых пленок Co (рисунок 22, е).

 

 

 

 


Рисунок 22 – Петли гистерезиса тонких пленок Co, нанесенных при температуре подложки T подл = 330 °С и температурах испарителя 120 (а), 130 (б), 135 (в), 145 (г), 150 (д) и 155 0С (е)

 

 

Зависимость удельного электрического сопротивления пленок Co от температурных условий осаждения представлена в таблице 4. Из таблицы видно, что для пленок из первой партии увеличение температуры подложки от 310 до 420 0С способствует значительному росту величины удельного электрического сопротивления. Отметим, что при температуре подложки, равной 420 0С, удельное электросопротивление исследуемых пленок сравнимо с сопротивлением кремниевой подложки, что объясняется несплошностью данных пленок. Удельное электрическое сопротивление пленок из второй партии характеризуется экстремальной зависимостью от температуры подложки с минимальным значением при температуре Тподл = 330 0С. Для пленок из третьей партии величина удельного электросопротивления имеет тенденцию к уменьшению с ростом температуры испарителя.

 

 

Таблица 4 – Коэрцитивная сила Hc, остаточная намагниченность Mr, намагниченность насыщения Ms и удельное электрическое сопротивление r пленок Co, полученных при различных температурах испарителя Тисп и подложки Тподл.

Тисп, 0С Тподл, 0С Hc, А/м Mr, emu/cм3 Ms, emu/cм3 r, 10-6 Ω*м
Первая партия
          0,38
          0,46
    - - - 3,69
    - - - -
          -
Вторая партия
          0,36
          0,34
          0,12
          0,07
          0,1
Третья партия
          0,46
          0,07
          0,05
          0,12
          0,11
          0,04
          0,04

 







Дата добавления: 2015-10-01; просмотров: 565. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия