Взаимосвязь между объемной скоростью тока жидкости и гидродинамическим сопротивлением
Как уже говорилось, ламинарный поток в трубках с круглым поперечным сечением представлен отдельными слоями жидкости, скользящими относительно друг друга подобно трубкам телескопа. Эту аналогию можно продолжить, применив закон Ньютона о внутреннем трении жидкостей для вывода уравнения, связывающего линейную либо объемную скорость кровотока, вязкость жидкости, градиент давления и размеры трубки (длину и внутренний радиус). В условиях стационарного состояния и ламинарного потока силы, создаваемые градиентом давления между двумя концами каждого концентрического слоя жидкости, должны быть уравновешены силами трения, создаваемыми между трущимися поверхностями этих слоев. При решении подобного уравнения можно получить параболический профиль скоростей, характерный для ламинарного потока; при этом средняя скорость тока жидкости будет зависеть от квадрата радиуса трубки. Объемная скорость кровотока будет рассчитываться исходя из закона Хагена-Пуазейля: (П) где Ρ-разность давлений, τ-радиус сосуда, η- вязкость жидкости, I-длина сосуда. Коэффициент 8 появляется в результате интегрирования скоростей слоев. Согласно закону Ома. гидродинамическое сопротивление потоку равно (12) Поскольку (уравнение (2)), средняя линейная скорость кровотока составляет (13) Видно, что объемная скорость прямо пропорциональна, а гидродинамическое сопротивление обратно пропорционально радиусу трубки в четвертой степени. Поэтому обе эти величины гораздо больше зависят от изменений диаметра сосудов, чем от изменений их длины, градиента давления или вязкости жидкости. Так, если в исходном состоянии объемная скорость кровотока через сосуд равна ГЛАВА 20. ФУНКЦИИ СОСУДИСТОЙ СИСТЕМЫ 503 1 мл/с, то при увеличении его диаметра вдвое она составит 16 мл/с, а при увеличении вчетверо256 мл/с; гидродинамическое же сопротивление при этом уменьшается соответственно в 16 и 256 раз. С учетом этих соотношений ясно, что при местных или системных приспособительных реакциях сосудистого русла главную роль в регуляции давления и объемной скорости кровотока играют изменения радиуса сосудов. Однако закон Хагена-Пуазейля имеет ограничения: так, он справедлив лишь для 1) жестких неветвящихся трубок с круглым поперечным сечением; 2) стационарного состояния и чисто ламинарного течения; 3) гомогенных жидкостей. В идеальном случае, когда все эти условия соблюдаются, сопротивление потоку минимально. Напротив, ситуация в сердечно-сосудистой системе совсем иная: сосуды эластичны и обладают сложной архитектурой с ветвлениями, кровоток не полностью непрерывен или турбулентен и кровь-это не гомогенная жидкость. Каждый из этих факторов в известной степени обусловливает увеличение гидродинамического сопротивления. Следовательно, кровоток в отдельных органах или сосудистой системе в целом не может быть точно описан уравнением Хагена-Пуазейля. Закон Ома также выполняется только при условии постоянного однонаправленного потока. Вследствие этого для более точного изучения гемодинамики необходимо разработать более тонкие методы, позволяющие учитывать дополнительные факторы, часть из которых оценить довольно сложно [5, 15, 33].
|