Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекции по синтаксису сложного предложения.





У виразі (крок 11) нарощується, якщо не є простим. Але, разом з тим, треба враховувати обмеження .

У кроці 12 можливість блокується переходом на побудову нового значення . Покажемо, що випадок неможливий.

Позначимо у виразі + (крок 9) перший доданок через , а другий доданок - через . Оцінемо розмір числа . Якщо число не є цілим, то = . Поділимо на з остачею. Це можна записати як , де та - цілі, .

Тоді . Але , звідки , тобто,

.

Оскільки, разом з тим, , а за побудовою, то .

Крім того, . Останнє потрібно, щоб врахувати присвоювання у п. 9.

Таким чином, двійковий запис числа має вигляд і містить серію нулів довжини, що практично дорівнює .

Аналогічно, для оцінки розміру числа запишемо , де та - цілі, . Оскільки , то . Кількість двійкових розрядів числа дорівнює . Якщо всі вони - одиниці, то відповідне значення є максимальним, тобто завжди . Тому , звідки: .

Очевидно, для виразу з п.11, для великого діапазону отримаємо , оскільки .

З цього випливає, що при додаванні чисел одиниця переносу зі старшого розяду суми виникне дуже рідко.

Таким чином, вихід числа на розрядність блокується у кроці 12 безпосередньою перевіркою, а чисел, що проходять перевірку, тобто мають розрядність , достатньо багато.

Тепер обгрунтуємо перевірку простоти числа .

Перепозначимо , де .

За теоремою Димитко, виконання умов кроку 13 достатньо для доведення простоти числа , якщо . Покажемо, що ця умова виконується.

Дійсно, якщо це не так, то , звідки: і . За кроком 12 алгоритма, , до того ж, , де . Тоді = , тобто, залежно від , , або , що є протиріччям.

На завершення приведемо процедуру С для побудови числа порядку за модулем - основи відкритого ключа цифрового підпису: .

1. Вибрати псевдовипадково число : .

2. Обчислити .

3. Якщо , перейти на крок 1, інакше, . Кінець процедури.

 

 

Лекции по синтаксису сложного предложения.







Дата добавления: 2015-10-02; просмотров: 322. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия