Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формы представления уравнений





Обыкновенное дифференциальное уравнение n- го порядка можно записать в виде соотношения:

. (1.4)

Уравнение включает независимую переменную x, а также неизвестную функцию y (x) и ее производные. Порядок уравнения определяется порядком старшей производной, входящей в уравнение.

В дифференциальное уравнение могут входить также дополнительные переменные: m ,…, m k. В этом случае говорят, что неизвестная функция зависит от переменных m ,…, m k как от параметров.

Наряду с уравнениями для одной неизвестной функции в теории дифференциаль­ных уравнений рассматриваются системы уравнений. Система урав­нений первого порядка, разрешенных относительно производных

(1.5)

называется нормальной системой. Введя векторные функции Y т=(y 1,…, yn), F т=(f 1,…, fn) можно записать систему (5) в векторной форме

.

Уравнение n -го порядка, разрешенное относительно старшей производной, имеет вид:

Уравнение n -го порядка легко свести к нормальной системе. Для этого введем обозначения:

.

Получим в результате систему уравнений первого порядка для неизвестных .

Пример 1.5. Нормальная система для частного случая уравнения колебаний имеет вид: .

Будем пола­гать независимую переменную действительной величиной. Неизвестные функции могут быть как действи­тельными, так и комплексными функциями действительной пере­менной. Очевидно, что, если в уравнении первого порядка неизвестная функция является комплексной: y (x) = Re(y) +j Im(y), – то такое уравнение эквивалентно системе обыкновенных дифференциальных уравнений для действительных функций Re(y)и Im(y).

Пример 1.6. Частное решение уравнения колебаний в случае малого коэффициента затухания a2<<1 можно записать в виде , где для краткости обозначено . Для проверки достаточно подставить выражения для в исходное уравнение. С помощью такой же проверки легко убедиться, что действительная и мнимая части функции V: , – также являются решениями уравнения.

 







Дата добавления: 2015-10-02; просмотров: 334. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия