Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формы представления решения дифференциального уравнения





Решением системы дифференциальных уравнений

(1.6)

называ­ется любая совокупность функций yi (x) (i =1,…, n), которые при подстановке в уравнения обращают их в тождества. Как правило, если дифференциальное уравнение разрешимо, то оно обладает бесчис­ленным множеством решений. Процесс нахождения решений назы­вается интегрированием дифференциального уравнения.

Если решение задано соотношением, определяющим y как неявную функцию x, то такое решение называется интегралом дифференциального уравнения. Для дифференциального уравнения первого порядка

(1.7)

интеграл может быть записан в виде:

, (1.8)

где С – произвольная постоянная. При каждом фиксированном значении С выражение (1.8) опре­деляет некоторое частное решение у=у (х) исходногоуравнения (1.7) как неявную функцию переменного х. Если С рассматривать как параметр, то выражение (1.8) определяет семейство решений у = у(х,С). Если выражение (1.8), в котором С рассматривается как параметр, определяет все множество решений соответствующего дифференциального уравнения, то это выражение называется общим интегралом данного дифференциального уравне­ния, а полученное из него выражение у = у (х, С) называется общим решением дифференциального уравнения.

Обычно рассматриваются уравнений с правыми частями, не­прерывными в некоторой области D изменения неизвестных функ­ций у, и независимой переменной х. Очевидно, что при этом решения yi (x) представляют собой непрерывно дифференцируемые функции. Однако в приложениях иногда приходится иметь дело с уравнения­ми, правые части которых имеют разрывы (например, при описании ударных нагрузок, мгновенно приложенных сил и т. д.), поэтому и сами решения будут иметь разрывы производных. Тогда естествен­но в качестве решения системы уравнений рассматривать непрерывные функции yi (x) скусочно-непрерывными производными. При подстановке в уравнения они дифференцируются всюду, за исключением точек разрыва (или отсутствия) производных. Такое решение естественно назвать обобщенным решением.

 







Дата добавления: 2015-10-02; просмотров: 324. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия