Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы очистки производственных сточных вод




Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Очистка производственных сточных вод организуется с делью использо­вания их в системах оборотного, последовательного или замкнутого водо­снабжения, обеспечения условий приема в городские системы водоотведения или сброса в водные объекты.

Вода, использованная в технологическом процессе, содержит примеси в виде: взвешенных частиц размером от 0,1 мкм и более, образующих су­спензии; нерастворяемых в воде капелек другой жидкости, образующих эмульсии; коллоидных систем с частицами размером от 1 мкм до 1 нм и растворенных в воде веществ в молекулярной или ионной форме. Примеси, содержащиеся в технологической воде, часто являются ценным сырьем или готовой продукцией.

Методы очистки сточных вод подразделяются на механические, физи­ко-химические и биологические.

Механические методы очистки обеспечивают извлечение из очищае­мых вод взвешенных и плавающих примесей. Наиболее простой способ уда­ления этих примесей — отстаивание, в процессе которого взвешенные ве-щества оседают на дно, а плавающие примеси всплывают на поверхность отстойников. Отстойники устраиваются горизонтальные, вертикальные и радиальные (рис. 3.11).

Рис.3.11. Отстойники:

А — горизонтальный; Б — вертикальный; В — радиальный 1 — загрязненная вода; 2 — очищенная вода; 3 — осадок (шлам); 4 — скребковый механизм

В горизонтальном отстойнике длина в 8—12 раз больше его глубины. Отстойники бывают непрерывного или периодического действия. В отстой­никах непрерывного действия отделение примесей происходит благодаря резкому уменьшению скорости движения очищаемой жидкости (до 0,005— 0,01м/с). Продолжительность прохождения жидкости через отстойник со­ставляет 1—3 часа. Эффективность осветления воды — от 40 до 60%. В от­стойниках периодического действия продолжительность отстоя жидкости составляет несколько часов, после чего происходит удаление всплывших примесей, осветленной воды и осадка. Затем процесс повторяется.

Глубина (высота) вертикального отстойника в несколько раз превышает его горизонтальный размер. Разделение твердой и жидкой фаз происходит за счет уменьшения скорости потока и изменения его направления на 180°. Вер­тикальные отстойники более компактны, однако их эффективность на 10—20% ниже, чем у горизонтальных.

В конструкции радиального отстойника реализован принцип действия вер­тикального и горизонтального отстойников. В центральной его части проис­ходит смена направления потока очищаемой жидкости, а от центра к пери­ферии он работает в режиме горизонтального отстойника. Это позволяет по­лучать достаточно компактные сооружения большой производительности. Эффективность осветления в радиальных отстойниках достигает 60%. Глуби­на их колеблется от 1,5 до 5 м, диаметр — от 15 до 60 м.

В зависимости от вида удаляемых плавающих примесей отстойники мо­гут называться нефтеловушками, жироуловителями и т.п. Эффективность уда­ления из воды плавающих примесей составляет 95—96%. Всплывшие приме­си удаляются с поверхности специальными приспособлениями и направля­ются на утилизацию.

Для удаления из воды волокнистых примесей (частичек шерсти, ниток, асбеста и др.) используется дисковый волокноуловитель, представляющий со­бой вращающийся перфорированный диск, по которому тонким слоем сте­кает очищаемая жидкость.

Для повышения эффективности процесса осветления к очищаемой в от­стойниках жидкости добавляют коагулянты — вещества, которые при взаи­модействии с водой образуют хлопьеобразные частицы размером 0,5—3 мм с развитой поверхностью, обладающие также небольшим электрическим заря­дом. При оседании эти хлопья захватывают из жидкости взвешенные и кол­лоидные частицы. В качестве коагулянтов применяются сернокислый алю­миний, хлорное железо и др. Расход их составляет от 40 до 700 кг/м3 очища­емой жидкости. Высокие дозы относятся к физико-химической очистке технологических вод, обеспечивающей удаление хрома и цианидов, а также обесцвечивание воды.

Интенсификации процесса коагуляции способствует добавка флокулян-тов — веществ, обеспечивающих агрегирование пластин коагулянтов и ус­коряющих тем самым их осаждение. В качестве флокулянтов применяют клей­кие вещества: крахмал, декстрин, силикатный клей. Весьма эффективным является синтетический флокулянт — полиакриламид (ПАА), широко ис­пользующийся также при подготовке питьевой воды. Доза применения ПАА колеблется от 0,5 до 25 г/м3 очищаемой жидкости. Внедряются в практику и другие коагулянты и флокулянты на основе активных полимеров, дозы при­менения которых в десятки раз меньше.

Тонкодисперсные частички, которые не удается извлечь из жидкости в отстойниках, могут быть удалены с помощью фильтрования. Процесс фильтро­вания заключается в прохождении жидкости через пористую преграду, на ко­торой осаждаются мелкодисперсные частицы. В качестве фильтрующего слоя используются зернистые материалы (песок, гранитная или мраморная крошка, керамзит и др.), ткани и нетканые полотна (хлопчатобумажные, шерстяные, синтетические, из асбеста, стекловолокна и др.), металлические сетки, перфо­рированные пластины, пористая керамика. Для ускорения процесса фильтро­вание производится под давлением или с помощью вакуума. Для извлечения нефтепродуктов, масел и других эмульгированных примесей применяются фильтры из полиуретана. Эффективность удаления взвешенных и эмульгиро­ванных примесей методом фильтрования достигает 99% и более.

В гидроциклонах и центрифугах разделение жидкой и твердой фаз произ­водится под воздействием центробежных сил.

Для удаления взвешенных веществ используются напорные гидроцик­лоны (рис.3.12). Для удаления плавающих примесей применяются откры­тые гидроциклоны. Гидроциклон представляет собой металлический ап­парат, состоящий из цилиндрической и конической частей. Диаметр ци­линдрической части — от 100 до 700 мм, высота примерно равна диаметру. Угол конусности составляет 10—20°. Внутри аппарата имеются струенаправ-ляющие лопасти в виде винтовой спирали. Поданная под давлением жид­кость, двигаясь по спирали к сливу, отделяется от взвешенных веществ. Частьжидкости с большим содержанием взвесей удаляется из гидроциклона, а осветленная вода под действием образовавшегося вакуума движется вверх и изливается через верхнее отверстие. В открытом (безнапорном) гидроцик­лоне удаление осветленной воды происходит через боковые отверстия, а всплывающие примеси извлекаются с помощью сифона. Гидроциклоны, по сравнению с другими устройствами для механической очистки вод, отлича­ются высокой производительностью, компактностью, экономичны в изго­товлении и эксплуатации. Эффективность очистки от взвешенных и плава­ющих примесей составляет примерно 70%.

Рис. 3.12. Гидроциклоны:

А — вертикальный напорный; Б — многоярусный открытый

1 — загрязненная вода; 2 — очищенная вода; 3 — осадок (шлам); 4 — плавающие примеси (нефтепродукты, масла)

Центрифугирование является эффективным методом разделения суспен­зий и эмульсий. Центрифуги изготовляются периодического и непрерывного действия с автоматической выгрузкой осадка и осветленной жидкости (фуга-та). При центрифугировании достигается достаточно высокая степень обез­воживания осадка и получается относительно чистый фугат. Центрифуги по­требляют большое количество электроэнергии, создают высокие шумовые нагрузки и небезопасны в эксплуатации.

Физико-химические методы очистки обеспечивают удаление из воды, как правило, растворенных веществ, неподдающихся или плохо поддающихся био­логической очистке, а также веществ, которые могут оказать неблагоприятное воздействие на коллекторы или другие элементы систем водоотведения.

Наиболее простым и распространенным методом физико-химической очи­стки является нейтрализация, которая заключается в подкислении щелочных вод (с рН>8,5) и подщелачивании вод с рН<6,5. При наличии на производ­стве кислых и щелочных вод нейтрализация достигается их смешением. При отсутствии одной из категорий вод нейтрализация осуществляется путем до­бавки реагента. Для нейтрализации кислых вод лучше всего использовать отходы щелочей — гидроокиси натрия или калия, не дающие осадка. При использовании гидроокиси кальция в виде известкового молока образуется шлам, который необходимо удалять, обезвреживать и утилизировать. Нейтра­лизация кислых вод достигается также фильтрованием их через слой извест­няка, доломита, магнезита, шлака или золы.

Для нейтрализации щелочных вод используется отработанная серная кис­лота. Высокоэффективным методом нейтрализации щелочных вод является продувка через них газовых выбросов, содержащих оксиды серы, углерода, азота и другие кислотообразующие окислы. Таким образом обеспечивается одновременно эффективная очистка дымовых газов.

Реагентная обработка применяется для очистки вод от цианидов, рода-нидов, ионов тяжелых металлов и ряда других примесей. Вид применяемого реагента определяется составом примесей, подлежащих удалению из воды. Так, разложение цианидов достигается обработкой воды жидким хлором или веществами, выделяющими активный хлор, — хлорной известью, гипохдори-дом кальция или натрия.

Окислением удается добиться деструкции таких соединений, как альдеги­ды, фенолы, анилиновые красители, серосодержащие органические вещества и др. В качестве окислителей применяют кислород, озон, перекись водорода, пиролюзит. В процессе окисления происходит разложение вредных приме­сей до простых окислов или образование соединений, поддающихся биохи­мическому разложению.

Извлечение из воды ионов ртути, хрома, кадмия, свинца, никеля, меди, мышьяка основано на переводе их из раствора в нерастворимый осадок. С этой целью очищаемую воду обрабатывают соединениями натрия или каль­ция — сульфитом, бисульфитом или сульфидом, карбонатами или гидрооки­сью. Образующийся шлам удаляют, утилизируют или складируют.

Одним из высокоэффективных методов очистки является ионный обмен, который представляет собой процесс взаимодействия очищаемой жидкости с зернистым материалом, обладающим способностью заменять ионы, находя­щиеся на поверхности зерен, на ионы противоположного заряда, содержа­щиеся в растворе. Такие материалы называются ионитами. Ионитными свой­ствами обладают природные минералы — цеолиты, апатиты, полевые шпаты, слюда, различные глины. Синтезировано большое число высокоэффектив­ных ионитов, обладающих селективными свойствами. К ним относятся си-ликагели, алюмогели, пермутиты, сульфоугли и ионообменные смолы — син­тетические высокомолекулярные органические соединения, углеводородные радикалы которых образуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Иониты не растворяются в воде, обладают достаточной механической прочностью, обеспечивают воз­можность их регенерации с получением ценных веществ, извлекаемых из очищаемых вод. Существуют ионообменные установки периодического и непрерывного действия (рис. 3.13).Установки периодического действия ра­ботают как фильтры с зернистой загрузкой в виде гранул ионитов. При насы­щении поверхности гранул ионами вещества, извлекаемого из воды, произ­водится их регенерация слабым раствором (2—8%) щелочи или кислоты. В установках непрерывного действия гранулы ионитов и очищаемая жидкость движутся противотоком, постоянно перемешиваясь. В процессе работы часть гранул подаются на регенерацию и заменяются новыми. Благодаря высокой механической прочности и способности к регенерации гранулы ионитов име­ют довольно продолжительный срок службы. Ионный обмен является, по су­ществу, универсальным методом очистки вод. Для извлечения практически любого вещества из воды можно подобрать соответствующий ионит или груп­пу ионитов. Эффективность ионообменной очистки достигает 95—99%.

Флотационная очистка применяется для удаления из воды поверхностно-активных веществ (ПАВ), нефтепродуктов, жиров, смол и др. Процесс фло­тации заключается в сорбировании содержащихся в воде примесей поверхно­стью пузырьков воздуха, нагнетаемого в очищаемую жидкость. В практике очистки вод используются напорные, безнапорные, вакуумные и электро­флотационные установки. Наибольшее распространение получили напорные установки (рис. 3.15).В таких установках вода сначала насыщается воздухом под давлением, а затем подается в открытый резервуар, где происходит выде­ление пузырьков и сорбирование ими содержащихся в воде примесей. Иног­да сжатый воздух подается в нижний слой жидкости, находящейся в резерву­аре (флотаторе). Для повышения эффективности очистки воздух подается через пористые (фильтросные) пластины. При вакуумной флотации в флота­торе создается разряжение, способствующее образованию пузырьков воздуха. Для безнапорной флотации используются эрлифтные установки, которые позволяют существенно (в 2—4 раза) снизить затраты электроэнергии на фло­тационную очистку. Повышению эффективности очистки вод при флотации способствует наличие синтетических поверхностно-активных веществ (СПАВ). Образуемая ими густая стойкая пена повышает степень извлечения из воды эмульгированных и диспергированных примесей. При флотации одновременно достигается дегазация очищаемых вод и насыщение их кислородом.

При электрофлотации образование пузырьков газа происходит вследствие электролиза воды. На аноде выделяется кислород, на катоде — водород. Од­нако этот метод очистки из-за больших затрат электроэнергии и роста ее стоимости практически не используют. По этим же причинам все реже при­меняют некогда широко распространенные электрохимические методы очист­ки вод: анодное окисление и катодное восстановление, электрокоагуляция, электродиализ. Электрохимические методы очистки основаны на пропуска­нии постоянного электрического тока через очищаемую жидкость. Кисло­род, выделяемый на аноде, окисляет органические примеси. В качестве ано­дов используют электролитические неразлагаемые материалы: графит, маг­нетит, диоксиды свинца, марганца или рутения, наносимые на титановую основу. На катодах происходит выделение водорода и оседание ионов металлов с образованием нерастворимых гидроксидов. Катоды изготавливаются из стали или алюминия.







Дата добавления: 2015-10-02; просмотров: 326. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.021 сек.) русская версия | украинская версия