Плоские электромагнитные волны и их свойства. Английский физик Джеймс Клерк Максвелл в 1864 г
Английский физик Джеймс Клерк Максвелл в 1864 г. впервые получил уравнения, описывающие динамику новой формы материи – электромагнитного поля. Теория электромагнитного поля Максвелла основана на следующих положениях. 1. Всякое изменение магнитного поля создает в окружающем пространстве вихревое электрическое поле (рис. 1.1 а). Линии напряженности вихревого электрического поля расположены в плоскости, перпендикулярной линиям индукции переменного магнитного поля, и охватывают их; они образуют с вектором 2. Всякое изменение электрического поля возбуждает в окружающем пространстве вихревое магнитное поле, линии индукции которого расположены в плоскости, перпендикулярной линиям напряженности переменного электрического поля, и охватывают их (рис. 1.1 б). Линии индукции возникающего магнитного поля образуют с вектором Переменные электрическое и магнитное поля могут существовать в пространстве в отрыве от зарядов и токов проводимости как единое электромагнитное поле. В природе электрические и магнитные явления выступают как две стороны единого процесса. Деление электромагнитного поля на электрическое и магнитное зависит от выбора системы отсчета. Действительно, вокруг зарядов, покоящихся в одной системе отсчета, существует только электрическое поле; однако эти же заряды будут двигаться относительно другой системы отсчета и порождать в этой системе отсчета, кроме электрического, еще и магнитное поле. Таким образом, теория Максвелла связала воедино электрические и магнитные явления. Если возбудить с помощью колеблющихся зарядов переменное электрическое или магнитное поле, то в окружающем пространстве возникает последовательность взаимных превращений электрических и магнитных полей, распространяющихся от точки к точке. Максвелл показал, что скорость электромагнитных волн в вакууме
где e0 и m0 – электрическая и магнитная постоянные, e0 = 8,85 · 10–12 Ф/м, m0 = 4p · 107 Гн/м. Эта скорость совпадает со скоростью света в вакууме. На этом основании Максвелл выдвинул смелое предположение, что световая волна – это лишь разновидность электромагнитных волн. Основные свойства электромагнитных волн, распространяющихся в пустом пространстве, можно получить, исходя из фундаментальных законов электромагнитной теории Максвелла. Наибольшей простотой отличаются плоские монохроматические волны. Плоская монохроматическая волна – это идеализация. Несмотря на ограниченную применимость такой идеализированной модели, она во многих случаях полезна для описания реальных волн. В плоских монохроматических волнах зависимость векторов
Волновой вектор Непосредственно из теории Максвелла следует: 1. Векторы 2. Векторы 3. В электромагнитной волне модули векторов Пусть плоская электромагнитная волна распространяется в положительном направлении оси z, вектор Уравнение этой волны запишется так:
На рис. 1.3 дан «моментальный снимок» такой волны. Из рисунка видно, что колебания электрического вектора Если направление распространения волны изменится на противоположное, то уравнение волны примет вид:
«Моментальный снимок» такой волны приведен на рис. 1.4. Расстояние между двумя ближайшими точками, колеблющимися в одинаковых фазах, есть длина волны l. Полеты управляемых космических аппаратов на далекие расстояния к планетам Солнечной системы продемонстрировали, что скорость распространения электромагнитных волн велика, но не бесконечна; она составляет 300 000 км/с. Например, команды, передаваемые в виде радиоволн космическим аппаратам, находящимся на Луне, приходят туда с запаздыванием по времени примерно на 1 с. Мы выяснили, что в электромагнитной волне колеблются две векторные величины:
|