Интеграл произведения синусов и косинусов различных аргументов.
Интеграл вида если функция R является нечетной относительно cosx. Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx. Функция может содержать cosx только в четных степенях, а следовательно, может быть преобразована в рациональную функцию относительно sinx. Интеграл вида если функция R является нечетной относительно sinx. По аналогии с рассмотренным выше случаем делается подстановка t = cosx. Тогда Интеграл вида функция R четная относительно sinx и cosx. Для преобразования функции R в рациональную используется подстановка t = tgx. Тогда Интеграл произведения синусов и косинусов различных аргументов. В зависимости от типа произведения применятся одна из трех формул: Интегрирование некоторых иррациональных функций. Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда. Рассмотрим некоторые приемы для интегрирования различных типов иррациональных функций. Интеграл вида где n- натуральное число. С помощью подстановки функция рационализируется. Тогда Интегралы вида .
Существует несколько способов интегрирования такого рода функций. В зависимости от вида выражения, стоящего под знаком радикала, предпочтительно применять тот или иной способ. Как известно, квадратный трехчлен путем выделения полного квадрата может быть приведен к виду: Таким образом, интеграл приводится к одному из трех типов: 1) 2) 3) Тригонометрическая подстановка. Интеграл вида подстановкой или сводится к интегралу от рациональной функции относительно sint или cost. Метод неопределенных коэффициентов. Рассмотрим интегралы следующих трех типов: где P(x) – многочлен, n – натуральное число. Причем интегралы II и III типов могут быть легко приведены к виду интеграла I типа. Далее делается следующее преобразование:
в этом выражении Q(x)- некоторый многочлен, степень которого ниже степени многочлена P(x), а l - некоторая постоянная величина.
|