Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вынужденные колебания





Цель работы:

Знакомство с компьютерной моделью вынужденных механических колебаний.

Экспериментальное исследование амплитудно-частотной характеристики пружинного маятника.

 

Основные понятия:

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными.

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω0.

Если свободные колебания происходят на частоте ω0, которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы.

После начала воздействия внешней силы на колебательную систему необходимо некоторое время Δt для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания τ свободных колебаний в колебательной системе.

В начальный момент в колебательной системе возбуждаются оба процесса – вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω0. Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы.

Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 2.5.1). Внешняя сила приложена к свободному концу пружины. Она заставляет свободный (левый на рис. 2.5.1) конец пружины перемещаться по закону

y = ym cos ωt,

где ym – амплитуда колебаний, ω – круговая частота.

Такой закон перемещения можно обеспечить с помощью шатунного механизма, не показанного на рисунке 1.

Рисунок 1. Вынужденные колебания груза на пружине.

Свободный конец пружины перемещается по закону y = ym cos ωt. l – длина недеформированной пружины, k – жесткость пружины

Если левый конец пружины смещен на расстояние y, а правый – на расстояние x от их первоначального положения, когда пружина была недеформирована, то удлинение пружины Δl равно:

Δl = x – y = x – ym cos ωt.

Второй закон Ньютона для тела массой m:

ma = –k(x – y) = –kx + kym cos ωt.

В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части – это упругая сила, стремящаяся возвратить тело в положение равновесия (x = 0). Второе слагаемое – внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой.

Уравнению, выражающему второй закон Ньютона для тела на пружине при наличии внешнего периодического воздействия, можно придать строгую математическую форму, если учесть связь между ускорением тела и его координатой:

Тогда уравнение вынужденных колебаний запишется в виде

где – собственная круговая частота свободных колебаний, ω – циклическая частота вынуждающей силы. В случае вынужденных колебаний груза на пружине (рис. 2.5.1) величина определяется выражением:

.

Это уравнение не учитывает действия сил трения.

С учетом сил трения уравнение вынужденных колебаний имеет вид:

,

где - коэффициент затухания.

Решение этого дифференциального уравнения состоит из двух частей: общего решения и частного решения:

,

где первое слагаемое отвечает собственным затухающим колебаниям, а второе – вынужденным.

Установившиеся вынужденные колебания груза на пружине происходят на частоте внешнего воздействия по закону

x(t) = А(w)cos (ωt + j).

Можно показать, что xm и j зависят от ω следующим образом:

,

.

Амплитуда вынужденных колебаний при

На очень низких частотах, когда ω << ω0, движение тела массой m, прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом x(t) = y(t), и пружина остается практически недеформированной. Внешняя сила , приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при ω << ω0 стремится к нулю.

Если частота ω внешней силы приближается к собственной частоте ω0, возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом. Зависимость амплитуды xm вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой (рисунок 2).

При резонансе амплитуда xm колебания груза может во много раз превосходить амплитуду ym колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рисунке 2.

Рисунок 2. Амплитудно-частотная характеристика

Резонансные кривые при различных уровнях затухания: 1 – колебательная система без трения; при резонансе амплитуда xm вынужденных колебаний неограниченно возрастает; 2, 3, 4 – реальные резонансные кривые для колебательных систем с различной добротностью: Q2 > Q3 > Q4. На низких частотах (ω << ω0) xm ≈ ym. На высоких частотах (ω >> ω0) xm → 0.

Перейдите от окна теории к окну модели, щелкнув по изображению «Модель. Вынужденные колебания». Внимательно рассмотрите рисунок, найдите все регуляторы и другие основные элементы.

Обратите внимание, что в данной работе коэффициент вязкого трения r обозначен как b. Установите флажок к графику x,t и v,t. Нажмите кнопку «Старт». Пронаблюдайте картину вынужденных колебаний пружинного маятника, изменяя параметры колебательной системы. Обратите внимание на то, что установившиеся вынужденные колебания всегда происходят на частоте вынуждающей силы. Получите у преподавателя допуск для выполнения измерений.

Порядок измерений и обработка результатов:

ЭКСПЕРИМЕНТ 1. Определение резонансной частоты колебательной системы.

  1. Установите значения m, r1 и k, соответствующие вашей бригаде
  2. Выберите график x,t (для бригад 1-4), выберите график v,t (для бригад 5-8).
  3. Установите значение частоты вынуждающей силы w=3.0 с-1. Измерьте с помощью линейки (или нажимая кнопку «Стоп») амплитуду установившихся колебаний x max.
  4. Увеличивая значение частоты на 0.5 с-1, наблюдайте вынужденные колебания. Повторите измерение амплитуды. При частоте, близкой к частоте резонанса, значение частоты изменяйте через 0.1 с-1. Результаты заносите в таблицу 2.
  5. Установите значение частоты вынуждающей силы w=w0. Пронаблюдайте явление резонанса. Измерьте амплитуду.
  6. Постройте амплитудно-частотную характеристику A (w).
  7. Повторите измерения пп. 3-5 для двух других значений коэффициента вязкого трения r, увеличивая его значение на 0.2 кг×с-1. Постройте амплитудно-частотную характеристику A (w) для r2 и r3 на том же графике.

ТАБЛИЦА 1. Параметры колебательной системы (не перерисовывать)

Бригада                
m [кг]                
k [Н/м]                
r=b[кг×с-1]                

ТАБЛИЦА 2. Результаты измерений при m= ____ кг, k = ____ Н/м.

  r1= ____кг×с-1. r2= ____кг×с-1. r3= ____кг×с-1.
w, с-1 A., см w, с-1 A., см w, с-1 A., см
           
           
           
           
           
           
           
             
  w0=   w0=   w0=  







Дата добавления: 2015-10-02; просмотров: 937. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия