Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства множества





Геометрические свойства множества:

Легко видеть, что при сумма периметров треугольников, входящих в множество Sn, стремится к бесконечности, а сумма их площадей к нулю. Поэтому общая длина каркаса бесконечна, площадь салфетки же равна нулю.

Размерность салфетки Серпинского:

Для вычисления фрактальной размерности салфетки Серпинского будем делить плоскость на ячейки в форме правильных треугольников со стороной eps. Число треугольных пор все меньшего и меньшего масштаба в нем бесконечно. Число черных треугольников в этом построении растет как 3 n, где n — номер шага, а длина их стороны уменьшается как 2n . Поэтому фрактальная размерность равна
Тогда множество Sn будет покрытием S и при этом eps=(1/2)n, N(eps)=3n. Поэтому D = ln3/ln2 = 1/5849.

Какова топологическая размерность салфетки Серпинского?
Обычная плоская фигура имеет топологическую размерность Самоподобие

Салфетка содержит бесконечную сетку - каркас, образованный сторонами всех участвующих в построении треугольников. Салфетка самоподобна - она состоит из кусков, каждый из которых подобен целому с коэффициентом подобия 1/2. "Выколем" точки, в которых эти куски соединяются, - середины сторон исходного треугольника. Тогда салфетка распадётся на три салфетки меньшего размера. С ними проделаем то же самое. Что станет с салфеткой, если этот процесс продолжить до бесконечности, выколов лишь счётное множество точек? Салфетка полностью рассыплется!

Итак, взяв любой из образовавшихся треугольников и увеличив его - получим точную копию целого, т.е множество самоподобно.

Вывод

Результаты показали, что салфетка Серпинского самоподобна, имеет дробную размерность, меньшую ее топологической размерности. Таким образом, при n стремящемся к бесконечности салфетка Серпинского становится фрактальным объектом.

«Дракон»

Драконова ломаная относится к классу самоподобных рекурсивно порождаемых геометрических структур. Ломаная нулевого порядка представляет собой просто прямой угол. Изображение фигуры каждого следующего порядка строится путем рекурсивных замен каждого из отрезков фигуры младшего порядка на два отрезка, сложенных также в виде прямого угла. При этом каждый первый угол оказывается "вывернутым" наружу, а каждый второй - вовнутрь. На рисунке проиллюстрирован алгоритм построения драконовой ломаной и изображен вполне взрослый "дракон" десятого порядка.







Дата добавления: 2015-10-02; просмотров: 481. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия