Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие сведения. Рассмотрим тело, закрепленное на оси спиральной пружины





Рассмотрим тело, закрепленное на оси спиральной пружины. Если повернуть тело на некоторый угол j, то вследствие закручивания пружины возникнет упругая сила. Эта сила создает крутящий момент М, возвращающий систему в исходное состояние, и возникнут крутильные колебания.

Крутящий момент М пропорционален углу поворота j

(1)

где D - модуль кручения, зависящий от механических свойств пружины.

Если пренебречь силами сопротивления, то основное уравнение динамики вращательного движения имеет вид

(2)

где J – момент инерции, e - угловое ускорение.

(3)

Из уравнений (1) и (2) и с учетом (3) следует

(4)

Это уравнение можно переписать в виде

(5)

Введем обозначения

Тогда уравнение (5) примет вид

(6)

Это дифференциальное уравнение крутильных колебаний. Решением этого уравнения являются функции синуса ил косинуса (гармонические функции)

где jо – максимальное (амплитудное) значение угла поворота, wо – круговая (циклическая) частота, a - начальная фаза.

Таким образом, крутильные колебания являются гармоническими колебаниями.

Частота и период этих колебаний равны соответственно

 
 

 

Если в системе имеются силы трения, то амплитуда колебаний будет постепенно уменьшаться, то есть колебания будут затухающими.

За счет сил трения возникает тормозящий момент

где r – коэффициент сопротивления, - угловая скорость.

Тогда основное уравнение динамики вращательного движения запишется так

 

Введя обозначения

получим дифференциальное уравнение затухающих колебаний

(9)

Решением этого уравнения является следующая функция

b - коэффициент затухания

- амплитуда затухающих колебаний.

Она уменьшается с течением времени.

частота затухающих колебаний

период затухающих колебаний

Затухающие колебания представляют собой непериодические колебания, так как в них значения смещения, скорости, ускорения не повторяются через период. Так что о периоде Т можно говорить лишь условно, как о времени, через которое система проходит через положение равновесия.

Степень затухания характеризуется несколькими величинами – коэффициентом затухания , логарифмическим декрементом затухания , временем релаксации .

Логарифм отношения двух последовательных значений амплитуд, отстоящих друг от друга на время, равное периоду T, называется логарифмическим декрементом затухания.

(10)

l=bT (11)

Время , в течение которого амплитуда убывает в e раз, называется временем релаксации

bt=1 (12)

- коэффициент затухания есть физическая величина обратная времени релаксации.







Дата добавления: 2015-10-02; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия