Программа сортировки по индексам
10 CLS:PRINT"СОРТИРОВКА ПО ИНДЕКСАМ" 20 DEFINT I-N: INPUT"ЧИСЛО ЧИСЕЛ";M:DIM A(M) 25 FOR I=1 TO M:READ A(I):NEXT I 30 FOR I=1 TO M-1 40 FOR K=I+1 TO M 50 IF A(I)<=A(K) THEN 70 60 B=A(I):A(I)=A(K):A(K)=B:GOTO 70 70 NEXT K 80 NEXT I 90 FOR I=1 TO M:PRINT A(I):NEXT I:GOTO 100 95 DATA 44,12,15,4,8,79,11,14,78,22,33,2,1,4,5,7,8,6,1,4,5,6 100 END Число проходов блока 5 составляет ровно M (M-1)/2. 8.Многокритериальные задачи принятия решений (объединение логических критериев) Для логических критериев в зависимости от поставленной конечной цели возможны следующие способы их объединения: цель достигается при выполнении всех целей одновременно (конъюнкция критериев); цель достигается при достижении хотя бы одной частной цели (дизъюнкция критериев), 9.Многокритериальные задачи принятия решений (объединение параметрических критериев). Для параметрических критериев ниже приводится ряд способов их объединения. Способ 1 Критерий Zо является взвешенной суммой частных критериев zi , где ki – весовой коэффициент i-го критерия. Неравнозначность частных критериев zi оценивается весовыми коэффициентами ki, что позволяет формировать с помощью данного критерия различные цели. Однако при применении такого критерия возможно, что при оптимальном решении экстремальное значение Zо достигается при большом отклонении какого-то частного критерия zi от своего оптимального значения. Для исключения данной ситуации могут вводиться ограничения. Весовые коэффициенты могут быть безразмерными или размерными (при различной размерности zi), положительными и отрицательными (при свертывании критериев типа zi® max и zi ® min). Способ 2 Критерий Zо основан на минимизации абсолютных отклонений частных критериев от их экстремальных значений , где – при минимизации и – при максимизации. Способ 3 Критерий Zо состоит в минимизации относительных отклонений частных критериев от их экстремальных значений без учета весовых коэффициентов (применяется при различных видах экстремума, отсутствии информации о важности критериев или при различной их размерности) . Способ 4 Критерий Zо формируется как взвешенная сумма частных критериев с учетом установленных ограничений. Тогда , где
|