Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Статистическое имитационное моделирование





Статистическое имитационное моделирование основывается на генерации случайных величин, имитации функционирования системы и статистической обработке результатов моделирования. Методом моделирования может быть исследована СМО любой степени сложности.

Для проведения моделирования могут использоваться как универсальные языки программирования так и проблемно-ориентированные - GPSS, SIMULA и др.

Параметры функционирования системы оцениваются при моделировании по результатам многократного обслуживания требований (многократных испытаний). При имитации работы системы случайные величины (длительность обслуживания в каналах, интервалы между поступлениями требований, время возврата требований в систему, моменты возникновения отказов каналов и их длительность и др.) получают генерацией по ранее приведенным алгоритмам в зависимости от вида распределения (закон, усечение, смещение).

Число обслуживаний (опытов) необходимо принимать таким, чтобы обеспечить оценку интересующих параметров с заданной точностью при принятой доверительной вероятности.

Таким образом, определение числа опытов производится по аналогии с расчетом размера выборки для исследования случайных величин. При этом это число рекомендуется определять в ходе моделирования на основе оценки точности рассчитываемых параметров.

Алгоритмы моделирования ранее рассмотренных систем массового обслуживания приведены на рисунках 2.18 и 2.19. Число моделируемых обслуживаний определяется на основе формулы для нормального закона распределения, а в качестве интересующего показателя принята средняя продолжительность ожидания требованием начала обслуживания. Отноcительная точность оценивания задана равной e с односторонней доверительной вероятностью g= 0.95 (квантиль равна 1.645).

Структура алгоритмов следующая:

блок 2– ввод и вывод на принтер исходных данных;

блоки 3-6 – формирование начальных условий моделирования;

блоки 7-10 – поиск канала (источника) с минимальным значением момента времени освобождения от предыдущего обслуживания (прибытия на обслуживание);

блоки 11-18– имитация обслуживания требований и накопление сумм длительностей времени простоев и обслуживания;

блоки 19-21– принятие решения об окончании моделирования или его продолжении;

блок 22 – наращивание номера опыта (испытания);

блоки 23-24 – вычисление средних значений параметров и вывод их на монитор (принтер).

42.Оценка адекватности уравнения регрессии данным эксперимента
Для проверки существенности коэффициента множественной корреляции и таким образом оценивания согласованности уравнения регрессии с экспериментальными данными используется статистика критерия Фишера

или

,

где и – соответственно объясненная и остаточная дисперсия для зависимого параметра.

Чтобы не было оснований отвергнуть гипотезу, что экспериментальные данные согласуются с полученным уравнением регрессии, рассчитанная статистика критерия Фишера должна быть больше табличного значения (F > Fт). Табличное значение Fт определяется в зависимости от уровня значимости γ и числа степеней свободы k1 и k2:

k1 = n;

k2= m - n- 1.

Уровень значимости (вероятность) рекомендуется принимать 0.01 – 0.05 (чем меньше, тем жестче требования к адекватности модели).

Если F<Fт, то считается, что уравнение регрессии не согласуется с экспериментальными данными.

43.Оценивание параметров теоретического закона распределения.

Для некоторых законов распределения ниже приведены вид функции плотности вероятности и функции распределения, а также зависимости для вычисления значений параметров.

 







Дата добавления: 2015-10-02; просмотров: 834. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия