Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон распределения Релея





Функция плотности вероятности

, x ³ 0;

Функция распределения

, x ³ 0;

Точечная оценка параметра закона распределения

.

Закон распределения Эрланга (гамма-распределение)

Функция плотности вероятности

, x ³ 0;

Функция распределения

, x ³ 0;

Точечная оценка параметров закона распределения:

и по k' принимается k как ближайшее целое (k=1, 2, 3,...); .

Закон распределения Вейбулла

Функция плотности вероятности

, x ³ 0;

функция распределения

, x ³ 0;

Точечная оценка параметров закона распределения

;

.

44.Загрузка каналов и их возможные приоритеты в системах массового обслуживания

В системах с приоритетами требований различают относительный приоритет (без прерывания обслуживания), когда при поступлении требования с более высоким приоритетом оно принимается на обслуживание после окончания ранее начавшегося обслуживания требования с меньшим приоритетом, и абсолютный приоритет, когда канал освобождается немедленно для обслуживания поступившего требования с более высоким приоритетом.

Шкала приоритета может быть построена исходя из каких-то внешних относительно системы обслуживания критериев или на показателях, связанных с работой самой системы обслуживания. Практическое значение имеют следующие типы приоритетов:

разделение входящих требований по категориям приоритетности в зависимости от их источников;

приоритет у требований с наименьшим временем обслуживания. Эффективность данного приоритета может быть показана на следующем примере. Поступили последовательно два требования с длительностью обслуживания соответственно 6,0 и 1,0 ч. При приеме их на обслуживание освободившимся каналом в порядке поступления простой составит для 1-го требования 6,0 ч и для второго 6,0+1,0 = 7,0 ч или суммарно для двух требований 13,0 ч. Если дать приоритет второму требованию и его принять на обслуживание первым, то его простой составит 1,0 ч и простой другого– 1,0+6,0 = 7,0 ч или суммарно для двух требований 8,0 ч. Выигрыш от назначенного приоритета составит 5,0ч (13-8) сокращения простоев требований в системе;

приоритет у требований с минимальным отношением времени обслуживания к мощности (производительности) источника требования, например, к грузоподъемности автомобиля.

Механизм обслуживания характеризуется параметрами отдельных каналов обслуживания, пропускной способностью системы в целом и другими данными об обслуживании требований. Пропускная способность системы определяется числом каналов (аппаратов) и производительностью каждого из них.

45.Определение доверительных интервалов случайных величин

Интервальная оценка параметра распределения случайной величины определяется тем, что с вероятностью g

abs(P – Pм) ≤d,

где P – точное (истинное) значение параметра;

Pм – оценка параметра по выборке;

d – точность (ошибка) оценивания параметра Р.

Наиболее часто принимают g от 0.8 до 0.99.

Доверительный интервал параметра [Pм–d, Pм+d] – это интервал, в который попадает значение параметра с вероятностью g. Например, на этой основе находится требуемый размер выборки случайной величины, который обеспечивает оценку математического ожидания при точности d с вероятностью g. Вид связи определяется законом распределения случайной величины.

Вероятность попадания случайной величины в заданный интервал [Х1, Х2] определяется приращением интегральной функции распределения на рассматриваемом интервале F(Х2)–F(Х1). Исходя из этого, при известной функции распределения можно найти ожидаемое гарантированное минимальное Хгн (x≥ Хгн) или максимальное значение Хгв (x≤ Хгв) случайной величины с заданной вероятностью g (рисунок 2.15). Первое из них является тем значением, больше которого случайная величина будет с вероятностью g, а второе – что случайная величина с вероятностью g меньше этого значения. Гарантированное минимальное значение Хгн с вероятностью g обеспечивается при F(x)= 1-g и максимальное Хгв при F(x)=g. Таким образом, значения Хгн и Хгв находятся по выражениям:

Хгн = F-1 (1-g);

Хгв = F-1 (g).

Пример. Случайная величина имеет экспоненциальное распределение с функцией .

Требуется найти значения Хгн и Хгв, для которых случайная величина х с вероятностью g=0.95 соответственно больше Хгн и меньше Хгв.

Исходя из того, что F-1 (α) = -1/l ln(1- α) (см.вывод ранее) и α = 1-g = 0.05 получаем

Хгн = -1/l ln(1- α) = -1/0.01 ln(1-0.05)=-100 (-.0513)=5.13.

Для Хгв α = g = 0.95 аналогично имеем

Хгв = -1/l ln(1- α) = -1/0.01 ln(1-0.95)=-100 (-2.996)=299.6.

Для нормального закона распределения значения Хгн и Хгв могут быть рассчитаны по формулам

Хгн = хм + s U1-g = хм - s Ug;

Хгв = xм + s Ug,

 

где xм – математическое ожидание случайной величины; s – среднеквадратическое отклонение случайной величины; Ug – односторонняя квантиль нормального закона распределения при вероятности g.

 

1.0

F(x)

0.80

 

0.60

g

0.40

 

0.20

1-g

xгн xгв x

 

Рисунок 2.15 – Графическая интрепретация определения Хгн и Хгв

46.Описание потоков требований на обслуживание

Входящий поток представляет собой последовательность требований (заявок), прибывающих в систему обслуживания, и характеризуется частотой поступления требований в единицу времени (интенсивностью) и законом распределения интенсивности потока. Входящий поток может быть описан также интервалами времени между моментами поступления требований и законом распределения этих интервалов.

Требования в потоке могут поступать по одному (ординарные потоки) или группами (неординарные потоки).

Свойство ординарности потока заключается в том, что в любой момент времени может поступить только одно требование. Иными словами, свойство заключается в том, что вероятность поступления больше одного требования за малый промежуток времени есть бесконечно малая величина.

В случае группового поступления требований задается интенсивность поступления групп требований и закон ее распределения, а также размер групп и закон их распределения.

Интенсивность поступления требований может изменяться во времени (нестационарные потоки) или зависит только от единицы времени, принятой для определения интенсивности (стационарные потоки). Поток называется стационарным, если вероятность появления n требований за промежуток времени (t0, t0+Δt) не зависит от t0, а зависит только от Δt.

В нестационарном потоке интенсивность изменяется во времени по непериодической или периодической закономерности (например, процессы сезонного характера), а также может иметь периоды, соответствующие частичной или полной задержке потока.

В зависимости от того, имеется ли связь между числом требований, поступивших в систему до и после некоторого момента времени, поток бывает с последействием или с отсутствием последействия.

Ординарный, стационарный поток требований с отсутствием последействия является простейшим.

47.Критерии согласия Пирсона и Романовского







Дата добавления: 2015-10-02; просмотров: 792. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия