Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерий Сэвиджа





 

Результаты расчета сожалений по ранее приведенной формуле даны в таблице вторыми строками. Например, для 1-го столбца (Ur=50) сожаления определяются по выражению

По рассчитанным сожалениям поиск оптимального решения проводится следующим образом

Критерий Сэвиджа (критерий минимизации "сожалений") основывается на расчете "сожалений" , равных полезности результата при данном состоянии среды Ur относительно наилучшего решения в зависимости от стратегии Xi, определяемого как :

.

К рассчитанным сожалениям применяется решающее правило

.

Этот критерий минимизирует возможные потери при условии, что состояние среды неблагоприятное.

Выбор одного из вышеуказанных критериев в качестве решающего производится принимающим решение.

19.18.Принятие решений в условиях риска

Задача в условиях риска состоит в том, что из-за случайности влияния отдельных факторов, например, внешней среды, с каждой принимаемой стратегией Хi связано множество возможных результатов Yj с известными вероятностями p(Yj,Xi), j=1,2,...,J; i=1,2,...,I. При этом достигается эффект V(Yj, Xi).

Обобщенной оценкой стратегии Xi является величина ожидаемого эффекта Vo(Xi), рассчитываемая по формуле .

Если в качестве исходных параметров известны вероятности различных состояний среды, то обобщенная оценка Vo(Xi) стратегии Xi определяется по формуле:

,

где R – общее число возможных состояний внешней cреды; P(Ur)– вероятность нахождения внешней среды в состоянии Ur (r=1, 2,...,R);V(Xi,Ur) – эффект, который складывается при стратегии Xi и состоянии среды Ur.

Принятие решений в условиях риска состоит в определении оптимальной стратегии Xi как

,

где Vo(Xi) – оценки эффективности (полезности) для стратегий Xi, i =1,2,...,I.







Дата добавления: 2015-10-02; просмотров: 461. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия