Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

На минимум. Метод золотого сечения основан на делении отрезка [a, b] по правилу золотого сечения, когда отношение большего отрезка к меньшему const





8 Да

Z1< Z2

 

Нет

9 10

 

a = xc b = xc Рисунок 3.3. Схема алгоритма программы по

методу дихотомии

 

 

Метод золотого сечения основан на делении отрезка [a, b] по правилу золотого сечения, когда отношение большего отрезка к меньшему const. Такое отношение определяется выражением ( -1)/2=0.62. При этом методе в отличие от метода дихотомии на каждой итерации требуется расчет только одного значения целевой функции. В результате находится решение xп и соответствующее ему значение целевой функции Zп (рисунки 3.4, 3.5).

На минимум:

f(x)

 

 


f(x2)

(1-k)(b-a)

f(x1) k(b-a)

 

 


a x1 x2 b x

 

Рисунок 3.4 – Графическая интепретация метода золотого сечения

 

1

Пуск

 

Ввод a, b, e a и b – текущие значения нижней и верхней

границ интервала поиска экстремума

e – точность поиска

k= ( -1)/2

 

 

i = 1

 

5 13

11 Да 15

x1 = a +(1-k)(b-a) abs(x2-x1)<e xп = (x2+x1)/2

 

6 Нет 16

Z1 = f(x1) на минимум 10

Нет 12 Zп = f(xп)

Z1 < Z2

Нет Да 17

i=1 13 Вывод xп , Zп

 

8 Да b= x2: x2 = x1

Z2 = Z1

i = 1 14 18

a= x1: x1 -= x2 5 Останов

9 Z1-= Z2

 

x2 = a + k (b-a)

 

Z2 = f(x2) 12

Рисунок 3.5. Схема алгоритма программы по методу

золотого сечения

 

Метод Фибоначчи основан на делении отрезка [a, b] с использованием чисел Фибоначчи, представляющих ряд, у которого последующее число равно сумме двух предыдущих (1,1,2,3,5,8 и т.д.).

 

Шаговые методы основаны на том, что текущему приближению к решению xп на каждом новом шаге дается приращение h как xп=xп+h и вычисляется f(xп). Если новое значение целевой функции "лучше" предыдущего, то переменной x дается новое приращение. Если функция "ухудшилась", то поиск в данном направлении завершен.

Имеется ряд разновидностей шагового метода поиска экстремума целевых функций (прямой поиск, поразрядного приближения, Зейделя и др.).

Графическая интепретация и алгоритм поиска экстремума функции на основе поразрядного приближения приведены на рисунках 3.6, 3.7.

f(x)

 

 

 


f(xп+h)

f(xп) На минимум

 

 

xп xп+h x

Рисунок 3.6 – Графическая интепретация метода поразрядного приближения

 

1

Пуск

 

xп, h, a,e xп и h – текущие значения соответственно приближения

к решению и шага поиска; a – коэффициент

изменения шага поиска; e – точность поиска решения

 

Z = f(xп)

 

Zп = Z

 

 

 

xп = xп + h

 

 

Z= f(xп)

 







Дата добавления: 2015-10-02; просмотров: 372. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия