Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вывод формулы трапеций





Известно, что если функция непрерывна на отрезке и известна её первообразная , то определенный интеграл от этой функции в пределах от a до может быть вычислен по формуле Ньютона-Лейбница:

где , штрихом вверху обозначен знак операции дифференцирования первообразной , по независимой переменной .

Однако во многих случаях первообразная не может быть найдена или не имеет смысла (если задана таблично). Поэтому важное значение имеют численные методы вычисления определенных интегралов. Численные методы являются приближенными, в основу их алгоритмов положен геометрический смысл определенного интеграла.

Определенный интеграл

(6.1)

представляет собой площадь, ограниченную кривой подинтегральной функции , осью абсцисс и прямыми и (см. рис. 6.1).

Обычно, обозначают Для вычисления искомой площади, отрезок разбивают на интервалов, каждый величиной

(6.2)

которая называется шагом интегрирования. На каждом интервале, величиной h, площадь ‘элементарной’ фигуры, ограниченной кривой подинтегральной функции , 2-мя ординатами (например, и ) и осью абсцисс, заменяют площадью, ограниченной прямой, теми же ординатами и осью абсцисс, т.е. площадью ‘элементарной’ трапеции. Отсюда следует название – метод трапеций. В целом, на отрезке кривая подинтегральной функции заменяется (аппроксимируется) кусочно-линейной функцией (см. рис. 6.1).

 

Рис. 6.1. Геометрический смысл определенного интеграла.

 

Площадь ‘элементарной’ трапеции для интервала с номером вычисляется по формуле:

(6.3)

 

а площадь, ограниченная кривой подынтегральной функции осью абсцисс и ординатами и , приближенно будет равна сумме площадей ‘элементарных’ трапеций. Тогда можно записать:

 

(6.4)

 

Эту запись называют формулой трапеций. В формуле (6.4) последняя форма записи является удобной для составления программ на алгоритмических языках.







Дата добавления: 2015-10-02; просмотров: 478. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия