Студопедия — Получение изопропилового спирта из ацетона .
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Получение изопропилового спирта из ацетона .






 

ЗАО "Химтэк Инжиниринг" владеет высокоэффективной технологией гидрирования ацетона в жидкой фазе на никельсодержащем катализаторе.
Процесс ведется при давлении в реакторе 0,7-1,0 Мпа и температуре 70-1200С. Срок службы катализатора составляет 1,5-2 года. Селективность гидрирования близка к 100%. В реакторе достигается практически полное превращение ацетона. Технология позволяет использовать водородсодержащие газы с концентрацией Н2 > 80%. Процесс ведется в адиабатическом режиме на стационарном слое катализатора в жидкой фазе, при контактной нагрузке на катализатор 0,8-1 1/ч.

 

Уравнение реакции

 

C3H60 + H2 < == > C3H80

Удельный расход сырья и энергетики

 

Ацетон 0,97 т/т
Водород 4 нм3
Катализатор 0,1 кг/т
Электроэнергия 10 кВт/т
Охлаждающая вода 8 м3

Для производства изопропилового спирта из ацетона необходима установка гидрирования. Капитальные вложения на строительство установки гидрирования мощностью 15-20 тысяч тонн составляют около 0,5 млн. долларов. В данном технологическом процессе используется водород, поэтому наличие производства водорода является преимуществом.
Стоимость переработки ацетона невелика и практически определяется стоимостью водорода. Цена на ацетон подвержена резким колебаниям, бывают сезонные периоды, когда его реализация затруднена и наблюдается избыток ацетона на рынке. В среднем удельный вес затрат на ацетон в себестоимости ИПС составляет около 80%, поэтому эта технология выгодна для предприятий, располагающих дешевым ацетоном.

Изобретение относится к получению изопропанола высокой чистоты гидрированием ацетона. Гидрирование ацетона осуществляют в жидкой фазе по меньшей мере в две стадии при температуре от 60 до 140°С и при давлении от 20 до 50 бар. При гидрировании используют никельсодержащий катализатор на нейтральном носителе, предпочтительно на носителе из α-окиси алюминия. Молярное отношение водород: ацетон составляет (1,5 -1): 1. Реактор первой стадии может быть циркуляционным, а на второй стадии - трубчатым. Гидрированию подвергают ацетон с содержанием воды менее 1,0 % мас. Технический результат - проведение процесса с высокой селективностью с получением изопропанола с концентрацией примесей менее 300 м.д., предпочтительно менее 100 м.д. 5 з.п. ф-лы, 2 ил.

 

 

Настоящее изобретение касается способа гидрирования ацетона, точнее способа гидрирования ацетона до изопропанола.

Ацетон представляет собой продукт, который находит широкое техническое применение и который может быть целевым порядком получен, например, при помощи окисления пропена или в качестве продукта реакции сопряжения при синтезе фенола по Хуку.

При синтезе фенола по Хуку на одну молекулу фенола получают одну молекулу ацетона. Варианты расхода фенола и ацетона очень различны; так, например, при синтезе бисфенола А фенол и ацетон расходуются в соотношении 2:1.

Возможным продуктом, получаемым из ацетона, является изопропанол, обладающий гораздо более широким спектром применения. Значительная часть изопропанола перерабатывается в простые эфиры, в частности в диизопропиловый и трет-бутилизопропиловый эфиры.

Превращение ацетона в изопропанол осуществляется, как правило, при помощи каталитического гидрирования. Для производства простых изопропаноловых эфиров в большинстве случаев используют комбинированный способ гидрирования и этерификации. Так, например, заявки на Европейские патенты ЕР 0694518, ЕР 0665207, ЕР 0652200 и ЕР 0661257 раскрывают способы получения различных простых изопропиловых эфиров. Общей в этих патентных заявках является следующая схема способа:

(а) каталитическое гидрирование жидкой фазы, содержащей ацетон,

(б) этерификация полученного таким образом изопропанола на кислых катализаторных системах.

Стадии (а) и (б) следуют непосредственно друг за другом, то есть без разделения смеси продуктов, полученной на стадии (а).

Кроме того, в заявке на Европейский патент ЕР 0665207 сообщается об одноступенчатом процессе, в котором стадии (а) и (б) выполняются на специальном катализаторе в одном единственном реакторе.

Выделение изопропанола после стадии реакции (а) является в результате образования побочных продуктов (способы рассчитаны на получение простых изопропиловых эфиров) очень сложным.

Ближайшим аналогом изобретения является способ гидрирования ацетона до изопропанола, описанный в Европейском патенте ЕР 0379323, при котором ацетон подвергают каталитическому гидрированию с обязательным использованием реактора оросительного типа при температуре в диапазоне от 20 до 200°С и при давлении в диапазоне от 1 до 80 бар. Реакторы оросительного типа используются для создания большой поверхности массообмена между жидкостью и газом. Поэтому они должны иметь большую площадь поверхности орошения. Качество полученного изопропанола, т.е. количество побочных продуктов не рассматривается.

Для многих случаев применения изопропанол не должен содержать таких побочных продуктов, как изопропиловый эфир или следы растворителей, привнесенные со стадии гидрирования. В частности, для использования в медицине или в косметике, или же для получения последующих продуктов изопропанол должен иметь очень высокую степень чистоты. Высокие же степени чистоты могут быть достигнуты в широком промышленном масштабе только при помощи дорогостоящих операций по очистке. Например, образующиеся при получении изопропанола в результате присоединения воды к пропену, серусодержащие соединения могут препятствовать его применению в косметической или фармацевтической промышленностях. Отделение же этих компонентов возможно лишь при помощи последующей обработки изопропанола активированным углем, двуокисью алюминия или такими металлами, как медь или никель.

Задачей настоящего изобретения является способ эффективного гидрирования ацетона до изопропанола высокой чистоты.

Поставленная задача решается способом гидрирования ацетона водородом в жидкой фазе в присутствии катализатора гидрирования на нейтральном носителе, при этом гидрирование ацетона в жидкой фазе осуществляют, по меньшей мере, в две стадии.

Способ по изобретению может быть использован для производства изопропанола из ацетона в крупном техническом масштабе (более 100 килотонн в год). Образование побочных продуктов почти полностью исключается, в результате чего не требуется дорогостоящее разделение.

Поэтому предметом настоящего изобретения является способ гидрирования ацетона до изопропанола, причем гидрирование в жидкой фазе производится не менее чем двухстадийно.

При гидрировании ацетона могут протекать следующие реакции:

После альдольной конденсации а) ацетона до диацетонового спирта (ДАС), проведенной на щелочном катализаторе, отщепление воды приводит к образованию 4-метил-3-пентен-2-он (окиси мезитила, ОМ). Гидрирование этого промежуточного компонента ОМ ведет к образованию 4-метил-2-пентанола (МП) через 4-метил-2-пентанон (метилизобутилкетон, МИБК). Но ДАС может быть гидрирован также непосредственно и до гексиленгликоля (ГГ). Целевой продукт (ИП) может далее при дегидратации б) продолжать реагировать до образования нежелательного простого диизопропилового эфира (ДИПЭ).

Используемый катализатор должен быть по возможности нейтральным, чтобы не оказывать каталитического действия на нежелательную побочную реакцию целевого продукта ИП, альдольную конденсацию и последующую дегидратацию.

Некоторые из указанных выше побочных реакций протекают при дегидратации.

Поэтому для предотвращения этих реакций, то есть для повышения селективности, предполагается подача незначительного количества воды, которая, являясь нежелательной для случаев специального использования изопропанола, остается в смеси продуктов и в случае необходимости должна быть удалена.

Настоящее изобретение, напротив, обеспечивает возможность гидрирования ацетона в присутствии очень незначительного количества воды. В приведенных ранее источниках указывалось, что подача воды в сырьевой поток является необходимой для повышения селективности, то есть для подавления образования побочных продуктов.

При помощи заявленного способа ацетон может быть гидрирован до изопропанола при содержании в нем воды, равном 1,0% маc. или менее, предпочтительно равном 0,5% маc. или менее и особенно предпочтительно равном 0,2% маc.

Требуемые для крупномасштабных промышленных процессов большие степени превращения могут быть достигнуты в предложенном случае или за счет использования циркуляционных реакторов, или же за счет реакторов, включенных последовательно по каскадной схеме.

Благодаря заявленному многоступенчатому способу ацетон может быть гидрирован до изопропанола высокой чистоты. Отдельные работающие как параллельные и/или каскадные стадии способа могут быть выполнены в виде циркуляционных или трубчатых реакторов.

Условия реакции могут варьироваться в широких пределах; гидрирование в жидкой фазе может осуществляться при температурах в диапазоне от 60 до 140, предпочтительно от 70 до 130°С и при давлении в диапазоне от 20 до 50, предпочтительно от 25 до 35 бар. Условия по температуре и давлению могут на различных стадиях отличаться.

Как правило, работают с избытком водорода: молярное отношение водорода к ацетону может находиться в пределах от 1,5: 1 до 1:1.

При специальной модификации заявленного способа используются две стадии, при этом реактор первой стадии может быть выполнен как циркуляционный, а реактор второй стадии - как трубчатый.

Упрощенная принципиальная схема заявленного способа представлена с некоторыми возможными узлами на фиг.1.

Большая часть требуемой конверсии достигается в циркуляционном реакторе А с рециклом продукта. Этот реактор работает на высоком уровне концентрации и может держать режим с низкой кратностью циркуляции. Продукт реакции, выводимый из циркуляционного реактора, может подвергаться промежуточному охлаждению (Б). Окончательно процесс гидрирования осуществляется в шахтной печи (В), работающей в режиме трубчатого реактора, без рецикла продукта. Знаком "а)" обозначены трубопроводы подачи и отвода водорода, знаком "п)" - продуктопровод. Оба реактора (А и В по фиг.1) выполнены как адиабатические.

Начальная температура первой стадии процесса лежит обычно в диапазоне от 50 до 90°С, а общее давление - от 10 до 30 бар. При повышенной начальной активности катализатора может быть или снижена начальная температура, или же повышена кратность циркуляции в первом реакторе и таким образом установлена требуемая температура на выходе, которая может соответствовать температуре на входе второго реактора.

Реактор первой стадии процесса может работать как циркуляционный реактор с кратностью циркуляции от 6 до 10. Содержание ацетона в цикулирующем потоке снижается в диапазоне от 8 до 20% маc., а содержание изопропанола соответствующим образом увеличивается. Процесс гидрирования является экзотермическим, так что в самом реакторе или после него следует предусмотреть возможность охлаждения. Гидрирование в жидкой фазе первой стадии процесса может осуществляться при температуре в диапазоне от 60 до 130°С, предпочтительно от 80 до 120°С и при давлении от 20 до 50 бар, предпочтительно от 25 до 35 бар.

Вторая стадия процесса, работающая на характеристике трубчатого реактора, может осуществляться при температуре в диапазоне от 60 до 140°С, предпочтительно от 70 до 130°С и при давлении в диапазоне от 20 до 50 бар.

На обеих стадиях процесса могут быть использованы одинаковые катализаторы гидрирования. Предлагается использование традиционных катализаторов гидрирования на основе таких активных компонентов, как медь, хром, рутений или никель, нанесенных на такие материалы, как окись алюминия, двуокись титана или двуокись циркония. В заявленном способе хорошо зарекомендовали себя катализаторы на основе никеля - например, с содержанием никеля около 10% маc. - на нейтральном носителе. Материал носителя катализатора в любом случае должен быть нейтральным. Нейтральными материалами носителей являются, например, α -окись алюминия, двуокись титана, двуокись циркония или муллит.

По заявленному способу получают изопропанол высокой чистоты. Общая концентрация таких побочных продуктов, образующихся при гидрировании, как 4-метил-3-пентен-2-он, 4-метил-2-пентанол, диацетоновый спирт, гексиленгликоль и простые диизопропиловые эфиры может быть менее 300, предпочтительно менее 200 и особенно предпочтительно менее 100 м.д.

Многоступенчатая концепция реакторного оборудования дает и другие преимущества за счет высокой технологической гибкости: в реакторах могут устанавливаться независимо друг от друга кратность циркуляции, давление и температура. При снижении активности катализатора в одном реакторе может быть, например, соответственно повышена температура в последующем реакторе.

При выборе реакторов необходимо обратить внимание на возможность хорошего распределение жидкости и/или на наличие большой поверхности газообмена, что может быть достигнуто за счет использования специального распределительного устройства, например, колец Рашига, насадки в виде проволочной сетки или структурной насадки Зульцера, а также за счет достаточно высокой объемной скорости, составляющей не менее 30 м32·ч.

Приведенный ниже пример описывает более подробно настоящее изобретение, не ограничивая однако область его использования.

Пример

Используют экспериментальную установку по фиг.2.

При периодически проводимом процессе сырье Ф помещают в разделительную емкость А и закачивают в контур циркуляции реактора. Затем аппаратуру выводят на требуемые условия реакции. В начале реакции циркуляцию переключают на реактор Р. Примерно через 5 минут устанавливаются постоянные значения температуры и давления, и в это время производят первые отборы проб. Подачу и отвод водорода производят по трубопроводам Г и X. В результате прокачивания продукта через соответствующее количество катализатора при однократном проходе через его слой получают различную степень конверсии. Кроме того, обеспечивают изотермическое протекание режима, дающее возможность упрощения кинетической оценки экспериментов. Благодаря отборам проб в различное время проведения эксперимента может быть составлен график зависимости концентрации от времени контактирования. Такие эксперименты соответствуют модели периодически действующего реактора с мешалкой или трубчатого реактора.

Используют никельсодержащий катализатор (10% маc. никеля) на нейтральном носителе из α -окиси алюминия.

Результаты экспериментов:

Реактор циркуляционного типа, используемый на первой стадии:

Температура на входе: 70°С

Температура на выходе: 115°С

Кратность циркуляции: 1:8

Объемная скорость: 220 м32·ч

Массовая доля на входе:

ацетон 22,2

изопропанол 77,8

Массовая доля на выходе:

ацетон 12,5

изопропанол 87,5

Трубчатый реактор, используемый на второй стадии:

Температура на входе: 70°С

Температура на выходе: 126°С

Объемная скорость: 38 м32·ч

Массовая доля на входе:

ацетон 12,5

изопропанол 87,5

Массовая доля на выходе:

ацетон 0,54

изопропанол 99,45

Побочные продукты: менее 100 м.д.

Побочными продуктами являются: метилизобутилкетон, 4-метил-2-пентанол, гексиленгликоль и другие не определенные высококипящие соединения.

1. Способ гидрирования ацетона до изопропанола водородом в жидкой фазе в присутствии катализатора гидрирования на нейтральном носителе, отличающийся тем, что гидрирование ацетона в жидкой фазе осуществляется по меньшей мере двухстадийно.

2. Способ по п.1, отличающийся тем, что гидрирование в жидкой фазе осуществляют при температуре от 60 до 140°С, при давлении от 20 до 50 бар и мольном соотношении водород: ацетон, равном (1,5-1): 1.

3. Способ по п.1 или 2, отличающийся тем, что общая концентрация побочных продуктов, образующихся при гидрировании, не превышает 300 м.д.

4. Способ по одному из пп.1-3, отличающийся тем, что гидрированию подвергают ацетон с содержанием воды менее 1,0 маc.%.

5. Способ по одному из пп.1-4, отличающийся тем, что гидрирование в жидкой фазе осуществляют в присутствии никельсодержащего катализатора на нейтральном носителе.

6. Способ по п.5, отличающийся тем, что используют никельсодержащий катализатор на носителе из α-окиси алюминия.

 

Изобретение относится к способу гидрирования ацетона с получением изопропанола, являющегося широко используемым промежуточным соединением в органическом синтезе, а также важным коммерческим растворителем. Способ заключается в том, что реакцию гидрирования проводят в мультитрубчатом реакторе, где используют катализатор на основе никеля и реактор работает при небольшом потоке реагентов, подаваемом в реактор. Способ позволяет за счет использования мультитрубчатого реактора осуществить более регулируемый и контролируемый отвод тепла, образующегося при проведении реакции, а также способ является экономичным, так как не требует рецикла ценного продукта реакции. 8 з.п. ф-лы, 1 табл., 1 ил.

 

 

Предпосылки создания изобретения

Настоящее изобретение относится к способу гидрирования ацетона в изопропанол.

Изопропанол является широко используемым промежуточным соединением в органическом синтезе, а также важным коммерческим растворителем.

Способ гидрирования ацетона в изопропанол описан в европейской заявке EP-A-0379323. Гидрирование ацетона в изопропанол является экзотермическим процессом. Как указано в EP-A-0379323, слишком высокая температура реакции вызывает избыточное разложение ацетона под действием водорода, что приводит к уменьшению выходов изопропанола. Эта проблема особенно остро возникает при гидрировании ацетона. По сравнению с другими кетонами ацетон обладает относительно низкой температурой кипения, и потому легко испаряется. Избыточное испарение может привести к образованию локальных участков перегрева и вызвать разложение ацетона под действием водорода. Поэтому именно при гидрировании ацетона необходимо строго контролировать температуру реакции. Одним из часто используемых методов контроля температуры реакции является рецикл продукта реакции, например, изопропанола. В приведенном в EP-A-0379323 примере 7 описан предварительный нагрев реагента до температуры 77°С перед его вводом в колонну вертикального реактора, внутренний диаметр которого составляет 38,4 м, и в результате на выходе из реактора смесь имеет температуру 113°С. Полученный после проведения реакции раствор делят на две части. Первую часть выделяют из реакционной системы в качестве продукта. Вторую часть возвращают обратно в реактор с помощью рециклирующего насоса и объединяют с ацетоном с образованием подаваемой в реакцию смеси. В линии рецикла второй порции размещают теплообменник. Температуру внутри реактора поддерживают на предварительно определенном уровне путем контролирования температуры внутри рубашки теплообменника. Однако при рецикле продукта реакции, который содержит большое количество изопропанола, процесс становится менее экономичным, а количество, например, диизопропилового эфира, являющегося основным побочным продуктом, может увеличиваться. По этой причине возможность контролирования температуры в самом реакторе ограничена.

Улучшение процесса было найдено за счет использования мультитрубчатого реактора. Использование мультитрубчатого реактора для гидрирования газообразного ацетона над медным катализатором описано в Патенте США 2456187.

Целью настоящего изобретения является улучшенный способ гидрирования ацетона с точки зрения экономичности и контроля температуры.

Краткое описание изобретения

Таким образом, настоящее изобретение относится к способу гидрирования ацетона для получения изопропанола, в котором реакцию гидрирования проводят в мультитрубчатом реакторе, в котором используют катализатор на основе никеля и в котором реактор работает по принципу подачи небольшого потока реагентов.

Использование мультитрубчатого реактора позволяет осуществить более регулируемый и контролируемый отвод тепла, образующегося при проведении реакции. Далее, процесс более экономичен, так как не требует рецикла ценного продукта реакции.

Подробное описание изобретения

Мультитрубчатый реактор, который используют в процессе по настоящему изобретению, предпочтительно состоит из по существу вертикально вытянутого сосуда, множества реакторных трубок с открытыми концами, установленных в реакторе параллельно его центральной продольной оси, верхние концы которых закреплены в верхней трубчатой пластине таким образом, что обеспечивается коммуникация жидкости с верхней жидкостной камерой, расположенной над верхней трубчатой пластиной, нижние концы которых закреплены в нижней трубчатой пластине таким образом, что обеспечивается коммуникация жидкости с нижней жидкостной камерой, расположенной под нижней трубчатой пластиной, приспособлений для подачи реагентов в одну из жидкостных камер и выхода продуктов из нижней жидкостной камеры.

При проведении операций реакторные трубки заполнены частицами катализатора.

Для превращения ацетона и водорода в изопропанол ацетон можно подавать через верхнюю жидкостную камеру в верхний конец реакторных трубок и пропускать его через реакторные трубки. Водород можно подавать либо через верхнюю жидкостную камеру (по типу сверху-вниз), либо через нижнюю жидкостную камеру (по типу снизу-вверх). Водород предпочтительно подают через верхнюю жидкостную камеру в одном направлении с потоком ацетона (сверху-вниз). Поступающий из нижней части реакторных трубок поток продукта реакции собирают в нижней жидкостной камере и выводят с помощью приспособления для отвода продукта.

Тепло реакции отводят с помощью охлаждающей жидкости, которую пропускают вдоль внешней поверхности реакторных трубок. В качестве охлаждающей жидкости может быть использован широкий ряд жидкостей. Примерами являются вода и углеводороды, такие как, например, керосин и термическое масло. Предпочтительной охлаждающей жидкостью является вода.

В предпочтительном варианте осуществления изобретения используют мультитрубчатый реактор, описанный в европейской заявке EP-A-0308034. В подобном мультитрубчатом реакторе верхняя часть каждой реакторной трубки, имеющей открытые концы, снабжена устройством для подачи газа и жидкости, при этом указанное устройство имеет входную камеру с отверстием для подачи газа, отверстием для ввода жидкости и отверстием для вывода жидкости, которое обеспечивает коммуникацию жидкости с верхней частью реакторной трубки, а также снабжена жидкостным коллектором, который расположен между уровнем слоя жидкости, образующегося при нормальной работе в верхней жидкостной камере и отверстии для ввода жидкости во входной камере.

Размер реактора будет зависеть от требуемой мощности процесса и может изменяться в широких пределах. Внутренний диаметр реактора предпочтительно находится в диапазоне от 0,1 до 8 м. Например, для реактора с относительно низкой производительностью продукта гидрирования, в частности от 10 до 30 килотонн в год, предпочтительный диаметр находится в диапазоне от 0,4 до 1,4 м, для реактора с умеренной производительностью продукта гидрирования, в частности от 30 до 70 килотонн в год, предпочтительный диаметр находится в интервале от 0,7 до 2 м, для реактора с высокой производительностью продукта гидрирования, в частности от 70 до 130 килотонн в год, значение предпочтительного диаметра находится в интервале от 1 до 3 м, а для реактора с очень высокой производительностью продукта гидрирования, в частности от 130 до 200 килотонн в год, значение предпочтительного диаметра находится в интервале от 1,5 до 5 м. Количество реакторных трубок может изменяться в широком диапазоне и также зависит от требуемой мощности процесса. На практике предпочтительное количество реакторных трубок составляет от 10 до 20000, более предпочтительно от 100 до 10000.

Внутренний диаметр реакторных трубок должен быть достаточно малым, чтобы выделяемое при реакции тепло могло эффективно передаваться охлаждающей жидкости, и достаточно большим, чтобы избежать ненужных материальных затрат. Оптимальный диаметр реакторных трубок зависит от количества тепла реакции, выделяемого в процессе гидрирования, и может также изменяться в зависимости от типа реагентов, количества реагентов и используемого катализатора. В процессе по настоящему изобретению внутренний диаметр реакторной трубки находится в интервале от 10 до 100 мм, более предпочтительно в интервале от 20 до 70 мм.

Процесс гидрирования может проводиться в широком диапазоне температур реакции. Предпочтительная температура внутри реактора находится в интервале от 40°С до 150°С, более предпочтительно в интервале от 60°С до 120°С.

Использование мультитрубчатого реактора предоставляет прекрасную возможность регулировать и контролировать температуру внутри реактора. Температура, которую поддерживают внутри реактора, может быть постоянной от верха реакторной трубки до низа реакторной трубки или же постепенно повышаться или понижаться. В предпочтительном варианте осуществления изобретения процесс гидрирования проводят в мультитрубчатом реакторе, имеющем понижающийся температурный профиль. Таким образом, реагенты подают в верхнюю часть реакторной трубки с высокой температурой, а затем температура постепенно понижается от верха до низа реакторной трубки. Подобный понижающийся температурный профиль позволяет добиться высокой степени конверсии и приводит к низкому уровню образования диизопропилового эфира.

Давление реакции может изменяться в широких пределах, однако предпочтительно его значение находится в интервале от 2 до 100 бар, еще более предпочтительно в интервале от 10 до 40 бар. Более высокое давление ведет к увеличению стоимости, в то время как более низкое давление может привести к низкой скорости конверсии. Если в качестве жидкости используют ацетон, то газ предпочтительно представляет собой практически чистый водород, хотя водород может содержать небольшие количества метана, этана, азота и других примесей.

Молярное отношение водорода к ацетону преимущественно составляет по крайней мере 1. Более предпочтительно значение молярного отношения водорода к ацетону находится в интервале от 1:1 до 10:1, наиболее более предпочтительно - в интервале от 1,5:1 до 5:1.

Необходимое количество катализатора зависит от требуемой мощности процесса и активности катализатора. Наиболее часто на практике применяют объемы катализатора в интервале от 0,1 до 50 м3, предпочтительно в интервале от 0,5 до 20 м3.

Катализатор, который используют в способе по настоящему изобретению, может быть любым катализатором на основе никеля, таким как восстановленные никелевые катализаторы, полученные нанесением оксида никеля на диатомовую землю, оксид алюминия или оксид кремния, или катализаторы типа никеля Ренея.

В предпочтительном варианте осуществления изобретения в качестве катализатора на основе никеля используют никель на оксиде кремния.

Катализатор предпочтительно находится в мультитрубчатом реакторе в виде неподвижного слоя.

В наиболее предпочтительном варианте осуществления изобретения процесс по настоящему изобретению проводят по принципу подачи небольшого количества реагентов. Это означает, что жидкое карбонильное соединение подают небольшим потоком вдоль поверхности катализатора, который плотно размещен в атмосфере, заполненной газообразным водородом.

Может использоваться широкий диапазон потоков жидкости и газа. Из практических соображений скорость движения газа вдоль поверхности предпочтительно находится в интервале 0,01-10 м/с, а скорость движения жидкости вдоль поверхности предпочтительно находится в интервале 0,0001-0,1 м/с.

В способе по настоящему изобретению подаваемый в реакцию ацетон может содержать некоторое количество продукта реакции. Например, подаваемый ацетон может содержать некоторое количество изопропанола. Однако предпочтительно количество продукта реакции в подаваемом в реакцию реагенте меньше, чем 50% мас./мас., более предпочтительно меньше, чем 10% мас./мас. и наиболее предпочтительно находится в интервале от 0 до 5% масс./масс.

Далее со ссылкой на чертеж приводится пояснение процесса по настоящему изобретению.

Используют мультитрубчатый реактор (101), который состоит из по существу вертикально вытянутого сосуда (103) и множества реакторных трубок (105) с открытыми концами (из практических соображений на чертеже изображено только четыре из них). Реакционные трубки с открытыми концами (105) размещены в сосуде (103) параллельно его центральной продольной оси (107). Верхние концы (109) реакторных трубок (105) с отрытыми концами закреплены в верхней трубчатой пластине (111) таким образом, что обеспечивают коммуникацию жидкости с верхней жидкостной камерой (113), расположенной над верхней трубчатой плитой (111). Нижние концы (115) реакторных трубок (105) с открытыми концами закреплены в нижней трубчатой пластине (117) таким образом, что обеспечивается коммуникация жидкости с нижней жидкостной камерой (119), расположенной под нижней трубчатой плитой (117). Сосуд имеет приспособление (121) для подачи реагентов в верхнюю жидкостную камеру (113) и приспособление для отвода продуктов (123) из нижней жидкостной камеры (119). Верхняя часть реакторных трубок с открытыми концами снабжена устройством (125) для подачи газа и жидкости, которое размещено в верхней жидкостной камере. Указанное устройство для подачи газа и жидкости состоит из входной камеры (127), имеющей отверстие (129) для ввода газа, канал для ввода жидкости (131) и канал (133) для вывода жидкости, который обеспечивает коммуникацию жидкости с верхней частью реакторной трубки с открытыми концами. Реакторные трубки (105) с открытыми концами заполнены катализатором (135) никель на оксиде кремния. Сосуд (103) далее снабжен приспособлениями для ввода (137) и отвода (139) охлаждающей жидкости, например воды, так что получают понижающийся температурный профиль. Охлаждающая жидкость поступает в камеру охлаждения (141) между верхней трубчатой плитой (111) и нижней трубчатой плитой (117).

Поток (143) ацетона и водорода, предварительно нагретый до температуры, например, 100°С, через верхнюю жидкостную камеру (113) с помощью устройства (125) для подачи газа и жидкости под давлением, например 25 атм, подают в реакторные трубки (105) с открытыми концами. В реакторных трубках (105) с открытыми концами над катализатором (135) никель на оксиде кремния, ацетон и водород взаимодействуют с образованием изопропанола. Поток продукта реакции, содержащего среди прочих изопропанол и небольшие количества диизопропилового эфира, выводят из реакторных трубок (105) с открытыми концами через нижнюю жидкостную камеру (119) с помощью приспособления (123) для отвода продуктов.

В таблице, приведенной ниже, представлены результаты экспериментов с использованием коммерческого катализатора меди на оксиде кремния при использовании ацетона в паровой фазе и жидкой фазе при 110°С. Конверсия ацетона в жидкой фазе составила 96,4%, тогда как конверсия паровой фазы была равна 99,4%. LHSV в экспериментах равна 2, т.е. выше, чем показано в US 5081321. При использовании коммерческого катализатора никеля на оксиде кремния при жидкой фазе при той же температуре, конверсия ацетона составила 99,95%. Конверсия является даже количественной при более низкой температуре (70°С).

Как видно из экспериментов 5 и 6, хуже использовать никелевые катализаторы при газовой фазе, чем при жидкой фазе, где эффективность такого катализатора оценивалась при разных фазах (при разной температуре).

Отношение водорода к ацетону в данных экспериментах была между двукратным и четырехкратным избытком.

Таблица
№ эксперимента металл температура, °C фаза конверсия ацетона, %
  Cu   пар 99,4
  Cu   жидкость 96,4
  Ni   жидкость 99,95
  Ni   жидкость 100,0
  Ni   пар 94,6
  Ni   жидкость 99,4

Из таблицы видно, что медные катализаторы предпочтительно использовать при паровой фазе ацетона, чем при жидком ацетоне, что в свою очередь совершенно противоположно для катализаторов на основе никеля.

При сопоставимых условиях никелевые катализаторы превосходят медные катализаторы.

1. Способ гидрирования ацетона с получением изопропанола, в котором реакцию гидрирования проводят в мультитрубчатом реакторе, где используют катализатор на основе никеля, и реактор работает при небольшом потоке реагентов, подаваемом в реактор.

2. Способ по п.1, в котором внутренний диаметр реактора находится в интервале от 0,1 до 8 м.

3. Способ по п.1 или 2, в котором мультитрубчатый реактор состоит из, по существу, вертикально вытянутого сосуда, множества реакторных трубок с открытыми концами, установленных в реакторе параллельно его центральной продольной оси, верхние концы которых закреплены в верхней трубчатой пластине таким образом, что обеспечивается коммуникация жидкости с верхней жидкостной камерой, расположенной над верхней трубчатой пластиной, и нижние концы которых закреплены в нижней трубчатой пластине таким образом, что обеспечивается коммуникация жидкости с нижней жидкостной камерой, расположенной под нижней трубчатой пластиной, приспособлений для подачи реагентов в верхнюю жидкостную камеру и выхода для отвода продуктов, размещенного в нижней жидкостной камере, при этом верхняя концевая часть каждой реакторной трубки снабжена устройством для подачи газа и жидкости, причем указанное устройство состоит из входной камеры, имеющей отверстие для ввода газа, канал для ввода жидкости и канал для вывода жидкости, который обеспечивает коммуникацию жидкости с верхней концевой частью реакторной трубки, и жидкостного коллектора, который расположен между уровнем слоя жидкости, образующегося при нормальной работе в верхней жидкостной камере, и каналом для ввода жидкости во входной камере.

4. Способ по п.3, в котором количество реакторных трубок находится в интервале от 10 до 20000.

5. Способ по п.1 или 2, в котором внутренний диаметр реакторных трубок находится в интервале от 10 до 100 мм.

6. Способ по п.1 или 2, в котором температуру внутри реактора поддерживают в интервале от 40 до 150°С.

7. Способ по п.1 или 2, в котором процесс гидрирования проводят в мультитрубчатом реакторе, имеющем понижающийся температурный профиль.

8. Способ по п.1 или 2, в котором используемым катализатором является никель на оксиде кремния.

9. Способ по п.1 или 2, в котором подаваемый в реактор ацетон содержит менее 50% мас./мас. продукта реакции.

 

Ацетон.

Свойства

Диметилкето́н (ацето́н, 2-пропанон) — простейший представитель кетонов. Формула: CH3-C(O)-CH3. Летучая бесцветная жидкость с характерным запахом. Ацетон хорошо растворяет многие органические вещества (ацетилцеллюлозу и нитроцеллюлозу, жиры, воск, резину и др.), а также ряд солей (хлорид кальция, иодид калия).

Молярная масса 58,08 г/моль, агрегатное состояние-жидкость, плотность 0,7899 г/см3, температура плавления – 95 0С, температура кипения 56,1 0С, температура вспышки -19 0С, температура самовоспламенения 465 0С, давления насыщенных паров 233 Па, энтальпия испарения 31,27 кДж/ моль, показатель преломления 1,3588, растворимость- хорошо растворяется в воде и органических окислителях, хранение - от +15 0С до 25 0С.

Получение

В лаборатории ацетон можно получить нагреванием ацетата кальция.

(CH3COO)2Ca→CaCO3+CH3C(O)CH3↑

Применение

Ацетон - широко применяемый р-ритель орг. веществ, в первую очередь нитратов и ацетатов целлюлозы; благодаря сравнительно малой токсичности он используется также в пищевой и фармацевтич. пром-сти; А. служит также сырьем для синтеза уксусного ангидрида, кетена, диацетонового спирта, окиси, мезитила, метилизобутилкетона, метилметакрилата, дифенилолпропана, изофорона и многих др. соединений. Мировое произ-во А. ок. 3 млн. т/год (1980).

 

Изопропиловый спирт.

Химические свойства

Химическая формула изопропилового спирта: CH3CH(OH)CH3.

Изопропанол обладает всеми свойствами вторичных спиртов жирного ряда.

Реагирует с сильными окислителями. Агрессивно в отношении некоторых видов пластика и резины.

Физические свойства

Пропанол-2 — бесцветная жидкость с характерным запахом этилового спирта, tплавения -89,5 °С, tкипения 82,4 °С, плотность 0,7851 г/см3 (при 20°C), tвспышки 11,7 °С. Нижний предел взрываемости в воздухе 2,5% по объёму (при 25 °С). Температура самовоспламенения: 456°C. Коэффициент преломления 1,3776 (в жидком состоянии, при 20 °С).

Пар хорошо смешивается с воздухом, легко образует взрывчатые смеси. Давление паров — 4.4 кПа (при 20°C). Относительная плотность пара — 2.1, относительная плотность смеси пар/воздух — 1.05 (при 20°C).

Изопропиловый спирт смешивается с водой и органическими растворителями во всех соотношениях, образует с водой азеотропную смесь (87,9% изопропилового спирта, tкипения 83,38 °С).

Получение

В промышленности изопропиловый спирт получают в основном сернокислотной или прямой гидратацией пропилена (CH3CHCH2+H2O). В качестве сырья используют пропан-пропиленовую фракцию газов крекинга, а также пропиленовую фракцию газов пиролиза нефти.

Применение

Изопропиловый спирт используют для получения:

• ацетона (дегидрированием или неполным окислением),

• пероксида водорода,

• метилизобутилкетона,

• изопропилацетата,

• изопропиламина,

По причине особого государственного регулирования этанола, изопропиловый спирт часто является его заменителем во многих областях его применения. Так, изопропанол входит в состав:

• косметики

• бытовой химии

• дезинфицирующих средств

• средства для автомобилей (антифриз, растворитель в зимних стеклоомывателях)

• репеллентов

Влияние на человека

Вещество раздражает глаза и дыхательные пути. Может оказывать действие на центральную нервную систему, приводя к её депрессии. Воздействие на уровне, значительно превышающем ПДК, может вызвать потерю сознания. Изопропанол метаболизируется в печени с образованием ацетона. Как правило, для здорового взрослого человека серьёзное токсическое воздействие при пероральном употреблении проявляется в дозах порядка 50мл и более.

Предельно допустимая концентрация равна 10 миллиграмм на кубический метр.

 

 
 
 
  Ацетон. Свойства Диметилкето́н (ацето́н, 2-пропанон) — простейший представитель кетонов. Формула: CH3-C(O)-CH3. Летучая бесцветная жидкость с характерным запахом. Ацетон хорошо растворяет многие органические вещества (ацетилцеллюлозу и нитроцеллюлозу, жиры, воск, резину и др.), а также ряд солей (хлорид кальция, иодид калия). Молярная масса 58,08 г/моль, агрегатное состояние-жидкость, плотность 0,7899 г/см3, температура плавления – 95 0С, температура кипения 56,1 0С, температура вспышки -19 0С, температура самовоспламенения 465 0С, давления насыщенных паров 233 Па, энтальпия испарения 31,27 кДж/ моль, показатель преломления 1,3588, растворимость- хорошо растворяется в воде и органических окислителях, хранение - от +15 0С до 25 0С. Получение В лаборатории ацетон можно получить нагреванием ацетата кальция. (CH3COO)2Ca→CaCO3+CH3C(O)CH3↑ Применение Ацетон - широко применяемый р-ритель орг. веществ, в первую очередь нитратов и ацетатов целлюлозы; благодаря сравнительно малой токсичности он используется также в пищевой и фармацевтич. пром-сти; А. служит также сырьем для синтеза уксусного ангидрида, кетена, диацетонового спирта, окиси, мезитила, метилизобутилкетона, метилметакрилата, дифенилолпропана, изофорона и многих др. соединений. Мировое произ-во А. ок. 3 млн. т/год (1980). Изопропиловый спирт. Химические свойства Химическая формула изопропилового спирта: CH3CH(OH)CH3. Изопропанол обладает всеми свойствами вторичных спиртов жирного ряда. Реагирует с сильными окислителями. Агрессивно в отношении некоторых видов пластика и резины. Физические свойства Пропанол-2 — бесцветная жидкость с характерным запахом этилового спирта, tплавения -89,5 °С, tкипения 82,4 °С, плотность 0,7851 г/см3 (при 20°C), tвспышки 11,7 °С. Нижний предел взрываемости в воздухе 2,5% по объёму (при 25 °С). Температура самовоспламенения: 456°C. Коэффициент преломления 1,3776 (в жидком состоянии, при 20 °С). Пар хорошо смешивается с воздухом, легко образует взрывчатые смеси. Давление паров — 4.4 кПа (при 20°C). Относительная плотность пара — 2.1, относительная плотность смеси пар/воздух — 1.05 (при 20°C). Изопропиловый спирт смешивается с водой и органическими растворителями во всех соотношениях, образует с водой азеотропную смесь (87,9% изопропилового спирта, tкипения 83,38 °С). Получение В промышленности изопропиловый спирт получают в основном сернокислотной или прямой гидратацией пропилена (CH3CHCH2+H2O). В качестве сырья используют пропан-пропиленовую фракцию газов крекинга, а также пропиленовую фракцию газов пиролиза нефти. Применение Изопропиловый спирт используют для получения:
  • ацетона (дегидрированием или неполным окислением),
  • пероксида водорода,
  • метилизобутилкетона,
  • изопропилацетата,
  • изопропиламина,
По причине особого государственного регулирования этанола, изопропиловый спирт часто является его заменителем во многих областях его применения. Так, изопропанол входит в состав:
  • косметики
  • бытовой химии
  • дезинфицирующих средств
  • средства для автомобилей (антифриз, растворитель в зимних стеклоомывателях)
  • репеллентов
Влияние на человека Вещество раздражает глаза и дыхательные пути. Может оказывать действие на центральную нервную систему, приводя к её депрессии. Воздействие на уровне, значительно превышающем ПДК, может вызвать потерю сознания. Изопропанол метаболизируется в печени с образованием ацетона. Как правило, для здорового взрослого человека серьёзное токсическое воздействие при пероральном употреблении проявляется в дозах порядка 50мл и более. Предельно допустимая концентрация равна 10 миллиграмм на кубический метр.   2. Тепловой и материальный баланс адиабатического РИВ и РПС    






Дата добавления: 2015-10-12; просмотров: 3435. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия