ЛАБОРАТОРНАЯ РАБОТА № 11
ИЗУЧЕНИЕ РАСПРЕДЕЛЕНИЯ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА И ОПРЕДЕЛЕНИЕ ЕГО ИНДУКТИВНОСТИ Выполнил студент -------------------------, группа -------------, дата -------. Допуск ______________ Выполнение __________ Зачет ________________ Цель работы: изучить распределение магнитного поля соленоида и определить его индуктивность; сравнить результаты измерений с теоретическими расчетами. Приборы и материалы
Теоретические сведения Основные понятия и законы 1.1. Магнитное поле и его характеристики Магнитное поле – одна из форм электромагнитного поля, релятивистский эффект электрического поля. Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем (током смещения), или собственными магнитными моментами частиц. С точки зрения квантовой теории поля магнитное взаимодействие – частный случай электромагнитного взаимодействия, переносится фундаментальным безмассовым бозоном – фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Магнитное поле действует только на движущиеся заряды. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути. Основными характеристиками магнитного поля являются магнитная индукция и напряженность, магнитный момент магнитный поток, магнитная проницаемость. Вектор индукции магнитного поля Магнитное поле может оказывать разнообразные воздействия на другие физические объекты, оказавшиеся в этом поле. Механическое действие, которое магнитное поле оказывает на другие тела, можно характеризовать вектором силы, а само поле – векторной физической величиной, называемой магнитной индукцией, которая позволяет определить эту силу. Магнитная индукция обозначается буквой Индукция магнитного поля – векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям. 1Тл – индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н. Магнитная индукция
![]() Направление вектора магнитной индукции задается направлением магнитной стрелки, помещенной в данную точку поля. Оно совпадает с направлением, которое указывает северный полюс стрелки (рис. 1).
![]() Магнитную индукцию Различают однородные и неоднородные магнитные поля. Поле, в каждой точке которого вектор магнитной индукции
На рисунке 3 приведены способы изображения силовых линий однородного магнитного поля, направленного вправо (а), влево (б), в плоскость листа от нас (в) и из него к нам (г). Опыт показывает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции: индукция магнитного поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме индукций магнитных полей, создаваемых каждым током или зарядом: Графическое изображение магнитного поля Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции. Непрерывная линия, касательная к которой в любой ее точке задает направление вектора магнитной индукции Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля. Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величине магнитной индукции. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии, принято считать северным полюсом, а противоположный конец, в который входят силовые линии, – южным полюсом. На рисунке 4 показаны исследования магнитного поля вокруг полосового магнита с помощью магнитных стрелок и картина силовых линий магнитного поля вокруг такого магнита. Картина силовых линий магнитного поля, созданного постоянным подковообразным магнитом (а), прямым проводом с током (б) и проволочным кольцом (в), по которому течет ток, показана на рисунке 5. Силовые линии магнитного поля – замкнутые линии. Во внешнем пространстве постоянных магнитов они идут от северного полюса к южному.
Направление силовых линий вокруг прямолинейного провода с током определяется по правилу буравчика (правовращающий винт, штопор): если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции. Вектор напряжённости магнитного поля Магнитное поле в макроскопическом описании представлено двумя различными векторными полями, обозначаемыми, как Для однородной изотропной среды вектор магнитной индукции связан с вектором напряженности следующим выражением:
где Магнитная проницаемость зависит только от свойств среды, в которой создаётся магнитное поле. Напряженность Магнитный момент контура с током Подобно тому, как для исследования электрического поля мы использовали пробный заряд, применим для исследования магнитного поля пробный ток, циркулирующий в плоском замкнутом контуре очень малых размеров. Будем называть такой контур пробным контуром (рис. 6).
![]() ![]() Вращающий момент, действующий на контур, зависит как от свойств магнитного поля в данной точке, так и от свойств контура. Оказывается, что максимальная величина вращающего момента пропорциональна Векторную величину На пробные контуры с разными
Магнитная индукция есть вектор, направление которого совпадает с направлением нормали контура с током, свободно установившегося во внешнем магнитном поле. Для произвольного замкнутого контура магнитный момент находится из:
где В общем случае произвольного распределения токов в среде: где Гипотеза Ампера Согласно предположению французского физика А.Ампера, постоянные магниты (например, намагниченное железо, стрелки компаса) содержит непрерывно движущиеся заряды, т.е. электрические токи в атомном масштабе. Такие микроскопические токи, обусловленные движением электронов в атомах и молекулах, существуют в любом теле. Эти микротоки создают свое магнитное поле и могут сами поворачиваться во внешних полях, создаваемых проводниками с током. Например, если вблизи какого-либо тела поместить проводник с током, то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле дополнительное магнитное поле. О природе и характере этих микротоков Ампер в то время ничего не мог сказать, так как учение о строении вещества находилось еще в самой начальной стадии. Гипотеза Ампера была блестяще подтверждена лишь спустя 100 лет, после открытия электрона и выяснения строения атомов и молекул. Магнитный момент – основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро– и микротоки. Элементарным источником магнетизма считают замкнутый ток. Магнитным моментом обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. Магнитные моменты элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента – спина. Поток вектора магнитной индукции
![]() ![]() ![]() ![]() Интегрируя это выражение по В однородном магнитном поле, модуль вектора индукции которого равен
![]()
Магнитный поток – величина алгебраическая: Единица измерения магнитного потока в систем СИ – 1 Вебер (1 Вб). 1 Вб – магнитный поток, проходящий через плоскую поверхность площадью 1 Магнитный поток через поверхность Поскольку линии магнитной индукции всегда замкнуты, для замкнутой поверхности число линий, входящих в поверхность – теорема Остроградского – Гаусса: поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:
Эта теорема является математическим выражением того, что в природе отсутствуют магнитные заряды, на которых начинались бы или заканчивались линии магнитной индукции, т.е. чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми. 1.2. Явление электромагнитной индукции Электромагнитная индукция – явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Если поток вектора магнитной индукции через замкнутый контур меняется во времени, в этом контуре возникает ЭДС электромагнитной индукции, порождаемая (в случае неподвижного контура) вихревым электрическим полем, возникающим вследствие изменения магнитного поля со временем (в случае неизменного со временем магнитного поля и изменения потока из-за движения контура – проводника такая ЭДС возникает посредством действия силы Лоренца). Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока – изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.
|