Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование координат при линейных операциях над векторами





Пусть в некотором линейном пространстве векторы , ,…, образуют базис и заданы 2 вектора и . С учетов 8 свойств линейных операций над векторами выполнены равенства , , . Итак, при сложении векторов их соответствующие координаты складываются, при вычитании векторов их соответствующие координаты вычитаются, при умножении векторов на число их соответствующие координаты умножаются на это число.

Как найти длину вектора и как охарактеризовать направление вектора? Пусть в реальном пространстве задан вектор , тогда его длина может быть найдена по формуле . Направление вектора удобно характеризовать направляющим вектором единичной длины с тем же направлением. Этот вектор обычно записывают в виде , где - углы между вектором и осями координат. Сами величины называются направляющими косинусами вектора .

Если рассматриваются векторы на плоскости, то все формулы формально остаются справедливыми – просто в них исчезает третья координата. Уточним обозначения.

Пусть на плоскости задан вектор , тогда его длина может быть найдена по формуле . Направление вектора удобно характеризовать направляющим вектором единичной длины с тем же направлением. Этот вектор обычно записывают в виде , где - угол между вектором и осью абсцисс.







Дата добавления: 2015-10-12; просмотров: 356. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия