Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача многомерного шкалирования и пути ее решения





Задача многомерного шкалирования в самом общем виде состоит в том, чтобы выявить структуру исследуемого множества стимулов. Под выявлением структуры понимается выделение набора основных факторов, по которым различаются стимулы, и описание каждого из стимулов в терминах этих факторов. Процедура построения структуры опирается на анализ объективной или субъективной информации о близостях между стимулами либо информации о предпочтениях на множестве стимулов. В случае анализа субъективных данных решаются одновременно две задачи. С одной стороны, выявляется объективная структура субъективных данных, с другой — определяются факторы, влияющие на процесс принятия решения.

Методы многомерного шкалирования могут использовать разные типы данных: данные о предпочтениях субъекта на множестве стимулов, данные о доминировании, о близостях между стимулами, данные о профилях и т. п. Как правило, с каждым типом данных принято соотносить определенную группу методов их обработки. Однако такое соотнесение не должно быть слишком жестким, поскольку часто не представляет особого труда перейти от одного типа данных к другому. Так, например, данные о профилях можно легко преобразовать в данные о близостях, для этого необходимо только воспользоваться подходящей метрикой. Данные о предпочтениях содержат в себе информацию о доминировании. С другой стороны, подсчитав корреляции между столбцами матрицы предпочтений, получим матрицу близостей между стимулами, а корреляции между строками той же матрицы дадут нам матрицу близостей между субъектами. В настоящей работе будет обсуждаться только анализ близостей.

В основе многомерного шкалирования лежит идея геометрического представления стимульного множества. Предположим, что нам задано координатное пространство, каждая ось которого соответствует одному из искомых факторов. Каждый стимул представляется точкой в этом пространстве, величины проекций этих точек на оси соответствуют значениям или степеням факторов, характеризующих данный стимул. Чем больше величина проекций, тем большим значением фактора обладает стимул. Мера сходства между двумя стимулами обратна расстоянию между соответствующими им точками. Чем ближе стимулы друг к другу, тем выше мера сходства между ними (и ниже мера различия), далеким точкам соответствует низкая мера сходства. Чтобы точным образом измерить близости, необходимо ввести метрику в искомом координатном пространстве; выбор этой метрики оказывает большое влияние на результат решения.

Обычно используется метрика Минковского:

 

где r — размерность пространства, djk — расстояние между точками, соответствующими j-му и k-му стимулам, Xjt, Xkt — величины проекций j-й и k-й точек на t-ю ось. Наиболее распространенными ее случаями являются: евклидова метрика (р=2):

 

и метрика «city-block» (р=1)

 

В некоторых случаях пользуются метрикой доминирования (р стремится к бесконечности):

Использование равномерных метрик предполагает, что при оценке сходств (различий) субъект в одинаковой мере учитывает все факторы. Когда же имеется основание утверждать, что факторы неравноценны для индивида и он учитывает их в разной степени, прибегают к взвешенной метрике, где каждому фактору приписывается определенный вес. Разные индивиды могут принимать во внимание разные факторы. Тогда каждый индивид характеризуется своим собственным набором весов Wti. Взвешенная метрика Минковского имеет вид:

 

Такая модель называется «индивидуальным шкалированием» или «моделью взвешенных факторов» [2, 12, 13]. Геометрически она интерпретируется следующим образом. Пусть в координатном пространстве имеется конфигурация точек, отражающая восприятие некоторого «среднего индивида» в группе. Для того чтобы получить пространство восприятия i-го субъекта, необходимо растянуть «среднюю конфигурацию» в направлении тех осей, для которых Wti > Wtср, и сжать в направлении осей, для которых Wti < Wtср. Например, если в пространстве двух факторов для «среднего индивида» все стимулы лежат на окружности, то для индивида, характеризующегося весами W1i=2, W2i=1, эти стимулы будут располагаться на эллипсе, вытянутом вдоль горизонтальной оси, а для индивида, характеризующегося весами W2i=2, W1i=1, на эллипсе, вытянутом вдоль вертикальной оси.

Схема многомерного шкалирования включает ряд последовательных этапов. На первом этапе необходимо получить экспериментальным способом субъективные оценки различий. Процедура опроса и вид оценок должны выбираться исследователем в зависимости от конкретной ситуации. В результате такого опроса должна быть сконструирована субъективная матрица попарных различий между стимулами, которая будет служить входной информацией для следующего этапа.

На втором этапе решается задача построения координатного пространства и размещения в нем точек-стимулов таким образом, чтобы расстояния между ними, определяемые по введенной метрике, наилучшим образом соответствовали исходным различиям между стимулами. Для решения этой формальной задачи не требуется никаких сведений о самих стимулах, достаточно располагать только матрицей попарных различий между ними. Для построения искомого координатного пространства используется достаточно разработанный аппарат линейной или нелинейной оптимизации. Вводится критерий качества отображения, называемый «стрессом» и измеряющий степень расхождення между исходными различиями Djk и результирующими расстояниями djk. Ищется такая конфигурация точек, которая давала бы минимальное значение этому «стрессу». Значения координат этих точек и являются решением задачи.

Используя эти координаты, мы строим геометрическое представление стимулов в пространстве невысокого числа измерений. Оно должно быть в достаточной степени адекватно исходным данным. Стимулы, которым в исходной матрице соответствуют большие меры различий, должны находиться далеко друг от друга, а стимулы, которым соответствуют малые меры различий, — близко. Формальным критерием адекватности может служить коэффициент корреляции, он должен быть достаточно высоким. Средство повышения точности формального решения состоит в увеличении числа измерений, т. е. размерности пространства r. Чем выше размерность пространства, тем больше возможностей получить более точное решение.

Геометрическое представление стимулов в пространстве невысокого числа измерений является результатом, имеющим самостоятельное значение. Оно даст возможность наглядного представления данных, удобного для визуального анализа, и направления его использования далеко выходят за рамки психометрических исследований.

На третьем этапе решается содержательная задача интерпретации формального результата, полученного на предыдущей стадии. Координатные оси построенного стимульного пространства должны получить смысловое содержание, они должны быть проинтерпретированы как факторы, определяющие расхождения между стимулами. Эта работа является достаточно сложной и может быть выполнена только специалистом, хорошо знакомым с исследуемым материалом. Если на предыдущем этапе достаточно было только информации о попарных различиях между стимулами, то для содержательной интерпретации необходимо тщательное изучение их характеристик.

[редактировать]

Геометрические свойства модели многомерного шкалирования и вопросы интерпретируемости решения

Многомерное шкалирование предлагает геометрическое представление стимулов в виде точек координатного пространства минимально возможной размерности.

Существует два типа моделей: дистанционные и векторные. В дистанционных моделях исходные различия должны быть приближены расстояниями, в большинстве случаев используют привычное евклидово расстояние:

 


В векторных моделях меры близостей или связей — величины, обратные различиям, аппроксимируются скалярными произведениями векторов, соединяющих точки, соответствующие стимулам, с началом координат:

 

При построении конфигурации стимулов используется аппарат линейной или нелинейной оптимизации. Почему же такая простая модель и формальные методы поиска экстремума позволяют получить содержательно интерпретируемое решение? Почему оси, построенные формальным образом, приобретают смысл хорошо интерпретируемых факторов?

[редактировать]







Дата добавления: 2015-10-12; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия