Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткие теоретические сведения. Жидкость также как и газ обладает свойством перемещаться из области большого давления в область меньшего давления





 

Жидкость также как и газ обладает свойством перемещаться из области большого давления в область меньшего давления. Такое перемещение называется течением жидкости. Различают два вида течения жидкости: лиминарное (слоистое) и тербулентное (вихревое). Ламинирным течением называют течение, при котором слои жидкости скользят друг по другу. Оно происходит при небольших скоростях движения в трубках с относительно гладкими стенками, без резких изменения площади сечения или направления, а также при отсутствии множественных разветвлений. Турбулентным называется такое течение, при котором слои жидкости перемешиваются. Оно возникает при резких сужениях сечения трубки, при значительной шероховатости поверхности стенок трубы, а также в местах множественного разветвления русла или трубы, по которой течет жидкость.

Течение жидкости при небольших скоростях носит ламинарный характер вследствие сил взаимного притяжения между молекулами жидкости, а также между молекулами жидкости и твердых тел, с которыми жидкость соприкасается в процессе течения.

Рис.1

Ламинарное течение жидкости можно изобразить в виде параллельно перемещающихся слоев, распределены так, как это показано на рисунке 1, где стрелки представляют векторы скорости движения жидкости. Наибольшая скорость наблюдаются в средней, прилегающей к оси части трубы; по мере приближения к стенкам скорость уменьшается, а слой, непосредственно, прилегающий к стенкам трубы, покоится. Таким образом, вся масса текущей жидкости разделена по слоям, движущихся с различными скоростями, между которыми действуют силы внутреннего трения, препятствующие перемещению одного слоя относительно другого. Величина силы внутреннего трения зависит от градиента скорости и площади соприкосновения слоев и выражается Формулой:

.

где F – сила внутреннего трения.

- коэффициент внутреннего трения (коэффициент вязкости),

- градиент скорости, т. е. отношение изменение скорости к расстоянию, на котором оно осуществляются, взятом в направлении наибольшего возрастания скорости;

ΔS – площадь сопротивления слоев.

Формула (1) представляет собой закон Ньютона для вязкости: сила внутреннего трения пропорциональна градиенту скорости, площади соприкосновения слоев и направлена против движения жидкости.

Коэффициент внутреннего трения является важной характеристикой жидкости. В зоотехнии и ветеринарии изучают вязкость молока, крови, меда, и т. п. как показатель состояния здоровья животного, качества продукции. Из формулы (1) следует физический смысл коэффициента внутреннего трения: коэффициент внутреннего трения численно равен силе внутреннего трения, действующей между слоями единичной площади при градиенте скорости, равному единице. Коэффициент внутреннего трения зависит от природы жидкости и ее температуры. С повышением температуры коэффициент внутреннего трения уменьшается, т. к. увеличивается среднее расстояние между молекулами, а значит, уменьшаются силы взаимного притяжения между ними.

В системе СИ коэффициент вязкости измеряется в Н*с/м2 = Па*с = кг/м*с, а в системе СГС в г/см*с. Последняя система единиц называется пуаз.

Изучая ламинарное течение жидкости, французский физик и физиолог Пуазейль в 1841 г установил закон, согласно которому средняя скорость ламинарного течения жидкости по трубе пропорциональна градиенту давления жидкости, квадрату радиуса трубы и обратно пропорциональна коэффициенту внутреннего трения жидкости:

.

где -скорость ламинарного течения жидкости;

-градиент давления;

r- радиус трубы;

ή-коэффициент внутреннего трения.

Знак минус в формуле (2) показывает, что скорость течения жидкости направлена противоположно градиенту давления.

Из закона Паузелия (2) можно получить формулу для определения объема жидкости, протекшей по трубе за некоторый промежуток времени t:

V=

 

где r-радиус трубы;

-длина трубы

t-время течения жидкости по трубе;

ή-коэффициент внутреннего трения;

разность давлений на концах трубы;

V-объем жидкости, протекшей по трубе завремя.

Формула (3) лежит в основе метода определения коэффициента внутреннего трения с помощью капиллярного вискозиметра.

 

ЗАДАНИЕ I: определение коэффициента внутреннего трения жидкости капиллярным вискозиметром.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: капиллярный вискозиметр, исследуемая жидкость дистиллированная вода, термометр, резиновая груша.

 

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙУСТАНОВКИ.

Рис.2

Капиллярный вискозиметр представляет собой U-образную стеклянную трубку рис.2, широкое колено, которой имеет внизу шарообразное расширение А. Капиллярная часть вискозиметра К имеет в своей верхней части шарик Б, переходящий затем в широкую трубку В. Шарик Б имеет метки М и Н, которые ограничивают определенный объем исследуемой жидкости. С помощью пипетки через широкое колено заполняют вискозиметр исследуемой жидкостью так, чтобы заполнился шарик А. С помощью груши через трубку В всасывают воздух так, чтобы уровень жидкости в вискозиметре поднялся выше метки М. Затем груша снимается с трубки В и жидкость в вискозиметре начнет под действием собственного веса опускаться по капилляру К. Секундомером определяют время t, в течение которого столб жидкости опустится от метки М до метки Н, т. е. время в течение которого по капилляру К протекает жидкость объемом, равным объему шарика Б.

Так как жидкость течет по капилляру под действием собственного веса, то разность давлений на концах капилляра будет равна гидростатическому давлению:

где ρ -плотность жидкости,

g -ускорение силы тяжести,

h -высота столба жидкости.

Учитывая это, формулу (3) можно записать в виде:

Из формулы (4) видно, что для определения коэффициента внутреннего трения η надо знать время течения жидкости по капилляру, радиус и длину капилляра, плотность жидкости, высоту поднятия ее в капилляре, а также объем протекшей жидкости.

Чтобы не делать таких затруднительных измерений, применяют метод сравнения. Для этого вначале проделывают опыт с дистиллированной водой, а затем с исследуемой жидкостью.

Запишем формулу (4) для дистиллированной воды и исследуемой жидкости:

-для воды:

-для исследуемой жидкости:

где -плотность дистиллированной воды,

-плотность исследуемой жидкости,

-коэффициент внутреннего трения воды,

-коэффициент внутреннего трения жидкости,

t0 --время протекания через капилляр воды,

tx -время протекания через капилляр жидкости.

В формулах (5) и (6) левые части равны, следовательно, равны и правые части:

Тогда получим:

Формула (7) является расчетной для определения коэффициента внутреннего трения капиллярным вискозиметром.

Для поддержания постоянной температуры исследуемой жидкости во время эксперимента вискозиметр опускают в сосуд с водой С.

 

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.

 

1.Чистый вискозиметр ополосните дистиллированной водой, а затем налейте в него дистиллированную воду так, чтобы заполнился нижний шарик А. Погрузите вискозиметр в сосуд с водой.

2.Осторожно с помощью резиновой груши засосите воду в верхний шарик Б чуть выше метки М.

3.Уберите резиновую грушу и секундомером определите время t0, в течении которого мениск воды пройдет расстояние от метки М до метки Н.

4.опыт проделайте 3-5 раз и вычислите среднее значение времени течения воды tоср.

5.Вылейте воду из вискозиметра и ополосните его исследуемой жидкостью.

6.Залейте в вискозиметр исследуемую жидкость до того же уровня, что и воду.

7.Так же, как и для дистиллированной воды, определите время tx течения жидкости от метки М до метки Н.

8.Опыт повторите 3-5 раз и вычислите среднее значение времени течения жидкости t x ср.

9.Измерьте температуру воды в сосуде С.

10.Выпишете из таблиц значения плотности воды ρ0, плотности исследуемой жидкости ρx и коэффициента внутреннего трения воды , соответствующие температуре воды в сосуде С.

11.Вычислите коэффициент внутреннего трения жидкости по формуле (7), подставляя средние значения txср и t0ср.

12.Расчитайте абсолютные ошибки измерений времени .

13.Вычислите относительную ошибку измерений коэффициента внутреннего трения жидкости по формуле:

14.Вычислите абсолютную ошибку коэффициента внутреннего трения по формуле:

15.Данные измерений занесите в таблицу 1 и 2:

 

Таблица 1.

Постоянные величины

Температура жидкости t, oC Концентрация раствора С, % Плотность воды ρо,г/см3 Плотность жидкости ρх г/см3 Вязкость воды η0 пуаз
         

 

 

Таблица 2

Результаты измерений

 

№№ t0, с tx, с Δt0, с Δ tx, с ηx пуаз x,% Δηx,пуаз
1.              
2.        
3.        
Средн.              

 

16.Сделайте выводы.

 

ЗАДАНИЕ 2: Определение коэффициента внутреннего трения жидкости методом падающего шарика (метод Стокса).

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: цилиндр с исследуемой жидкостью, набор шариков, секундомер, термометр.

 

ОПИСАНИЕ ЭКСПРИМЕНТАЛЬОЙ УСТАНОВКИ.

Всякая реальная жидкость обладает вязкостью и поэтому тело, движущееся в жидкости, испытывает на себе силы сопротивления со стороны жидкости. Подчеркнем, что здесь играет роль не трение шарика о жидкость, а трение отдельных слоев жидкости друг о друга, так как при соприкосновении твердого тела с жидкостью, к поверхности тела тотчас же прилипают молекулы жидкости, образуя молекулярный слой жидкости, обволакивающий тело. Слой жидкости, непосредственно прилегающий к телу, будет двигаться со скоростью тела и увлекать за собой соседние слои жидкости, которые тоже начнут двигаться. Таким образом, при небольших скоростях движения тела в жидкости будет происходить ламинарное течение жидкости в направлении траектории движения тела.

Английский физик Стокс установил закон: для тела шарообразной формы, движущегося с небольшой скоростью в жидкости, сила сопротивления F пропорциональна коэффициенту внутреннего трения η, радиусу шара r и скорости движения шара ν:

В данной работе для определения коэффициента внутреннего трения жидкости используется стеклянный цилиндр с исследуемой жидкостью(рис.3).На стекле цилиндра нанесены две метки: метка начала отсчета времени падения шарика(1) и окончания(2).

Рассмотрим падение шарика вязкой покоящейся жидкости. На шарик действуют три силы: сила тяжести

сила сопротивления (сила Стокса)

= 6πrηυ

Выталкивающая сила (по закону Архимеда равна весу вытесненной шариком жидкости).

F1 = 4/3πr2 ρ0g

где ρ0 – плотность вещества,

r – его радиус.

g – ускорение силы тяжести,

η – коэффициент внутреннего трения жидкости,

υ – скорость падения шарика,

ρ1 – плотность жидкости,

Направления этих сил указаны на рисунке 3.

 

 

В процессе движения шарика силы ρ и F1 не изменятся, а сила сопротивления F будет увеличиваться по мере увеличения скорости движения шарика (вначале шарик движется ускоренно. Наступит такой момент, когда силы F1 и F уравновесят силу тяжести, и тогда шарик будет двигаться равномерно. Следовательно, при условии:

Р = F1+F

шарик падает с постоянной скоростью, которую можно определить, зная пройденный путь и время:

Учитывая (9, 10, 11), и равенство (12) можно записать в виде:

4/3 πr3ρg = 4/3 πr3ρ1g + 6πrηυ.

Отсюда после преобразования (учитывая формулу (13)) получим:

Заметим, что все наши рассуждения верны лишь в том случае, если шарик падает в безгранично простирающейся жидкости, что практически осуществить невозможно, так как жидкость всегда находится в сосуде, имеющем стенки. Однако, если размеры сосуда значительно превышают размеры шарика, то формулу (14) можно считать верной. В противном случае следует внести в формулу поправку, учитывающую радиус сосуда, в котором налита жидкость; для цилиндрического сосуда с учетом его радиуса расчетная формула примет вид:

Вопрос о том, какой формулой пользоваться, решается в зависимости от величины отношения r/R. Если оно меньше чем 0,05, то берут формулу (14), а если больше, то (15).







Дата добавления: 2015-10-12; просмотров: 770. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия