Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тепловіддача при зміні агрегатного стану речовини




Тепловіддача при конденсації пари. Найбільш задовільною схемою процесу конденсації пари є схема Нусельта, за якого на по­верхню твердого тіла, яке сприймає тепло від пари, відбувається плівкова конденсація у відсутності краплинної. Плівка рідини, яка утворюється на поверхні твердого тіла, чинить основний термічний опір поширенню теплоти від пари до твердого тіла.

В результаті аналізу і узагальнення дослідних даних одержа­на така критеріальна залежність для визначення коефіцієнта теп­ловіддачі у випадку конденсації

(4.25)

Де С — коефіцієнт, рівний 1,15 при конденсації на вертикальних поверхнях і 0,72 при конденсації на зовнішній поверхні окремої горизонтальної труби.

За визначальний розмір при конденсації пари на верти­кальній стінці взято висоту стінки, а при конденсації на горизон­тальній трубі — діаметр труби. За визначальну температуру взя­то середню температуру плівки конденсату, при якій знаходять фізичні параметри, що входять в критерії рівняння (4.25).

Формула (4.25) справедлива, коли швидкість руху пари мала

. При значних швидкостях руху пари коефіцієнт теп-

ловіддачі збільшується, якщо потік зменшує товщину плівки кон­денсату або зриває його. Якщо ж потік пари перешкоджає руху плівки конденсату, товщина її зростає і коефіцієнт тепловіддачі зменшується.

Тепловіддача при кипінні рідини — дуже складний процес. Тому запропоноване критеріальне рівняння для визначення ко­ефіцієнта тепловіддачі має наближений характер.

Для випадку кипіння у вертикальних трубах з природною циркуляцією можна скористатися рівнянням

(4,26)

 

 

Де — критерій теплової напруги;

— густина пари, ;

r — теплота пароутворення, Дж/кг;

—частота пароутворення, 1/с;

 

— відривний діаметр бульбашки, м;

 

— поверхневий натяг, Н/м;

—густина рідини,

Рівняння (4.26) зводиться до розрахункової формули

(4.27)

Де — розрахунковий коефіцієнт, що залежить від

фізичних параметрів киплячої рідини.

Променистий теплообмін. Випромінювання властиве усім тілам, оскільки у кожному тілі частина теплової енергії перетво­рюється на променисту. Інтенсивність випромінювання залежить від температури тіла. Потрапивши на інші тіла, промениста енергія частково поглинається тілом, знову перетворюючись на теплову, частково відбивається і частково проходить крізь тіло.

Коефіцієнт тепловіддачі випромінювання можна визначити формулою

(4.28)

 

Де — ступінь чорноти твердого тіла;

— температура поверхні тіла, °K

— температура оточуючого простору°K

 

Теплопередача. Процес передачі теплоти від гарячого тепло­носія до холодного через стінку, що їх розділяє, визначається су­купною дією розглянених елементарних явищ.

Кількість теплоти яка передається, визначають за загальним піинянням теплопередачі:

де k — коефіцієнт теплопередачі, Вт/ -град:

F — поверхня теплообміну.

- середня різниця температур між середовищами,°C

 

Коефіцієнт теплопередачі визначає кількість теплоти, яка пе­редана через одиницю поверхні протягом одиниці часу від одно­го середовища до іншого при різниці температур між ними 1 °С. Він є підсумковим коефіцієнтом швидкості теплового процесу при переході теплоти від ядра потоку першого теплоносія до стінки (тепловіддачею), через стінку (теплопровідністю) і від стінки до ядра потоку другого теплоносія (тепловіддачею).

Теплопередача через плоску стінку. Щоб вивести співвідно­шення, яке зв'язувало б коефіцієнт теплопередачі з коефіцієнтами теплопровідності тепловіддачі, розглянемо процес передачі теплоти через плоску стінку товщиною з коефіцієнтом теплопровідності (рис. 4.22). З одного боку стінки омиває теплоносій з температурою з другого — з температурою .

Температури поверхонь стінки і коефіцієнти тепловіддачі

 

При сталому процесі можна записати такі три рівняння:

З цих рівнянь можна дістати вирази для окремих температур­них напорів:

Додаючи ці рівняння, дістанемо повний температурний напір

звідки

(4.30)

Отже, коефіцієнт теплопередачі дорівнює

°C), (4.31)

Величину, обернену коефіцієнту теплопередачі, називають термічним опором теплопередачі:

(4.32)

З цього рівняння випливає, що загальний термічний опір дорівнює сумі окремих складових. Зазначимо, що коефіцієнти тепловіддачі мають найбільше значення при плівковій конден-

сацїї —

, при краплинній — що значно перевищує значення

коефіцієнта тепловіддачі газів та рідин

 

 







Дата добавления: 2015-10-12; просмотров: 1332. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.005 сек.) русская версия | украинская версия