Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Конструкції теплообмінників




Теплообмінні апарати можна класифікувати за призначенням (підігрівники, охолоджувачі і т.д.), за числом ходів теплоносія, за схемами різного поєднання прямотоку, протитечійності і пере­хресної течії.

Незважаючи на те, що теплообмінні апарати розрізняють за принципом дії, будовою, типом теплоносіїв і призначенням, мож­на сформулювати ще й основні вимоги теплового, гідроди­намічного, експлуатаційного, конструктивного і технічного ха­рактеру, які треба враховувати при виборі типу, розрахунку і конструктивній розробці теплообмінної апаратури.

Основна вимога, з точки зору теплопередачі та гідродинамі­ки, є досягнення в теплообміннику максимального коефіцієнта теплопередачі при мінімальному гідравлічному опорі. Підвищен­ня коефіцієнта теплопередачі дає можливість зменшити габари­ти, вагу, вартість теплообмінників та витрати металу. Зменшення гідравлічного опору апарата призводить до зниження витрат енергії на прокачування теплоносіїв. Проте обидві ці вимоги зви­чайно перебувають у взаємній суперечності. Тому, конструюючи теплообмінники, доводиться шукати оптимальне розв'язання цієї суперечливості.

При виборі типу теплообмінного апарата і конструюванні його окремих вузлів часто вирішальним фактором служать експ­луатаційні вимоги:

а) мала забрудненість поверхні теплообміну, зручність очи­щення, огляду і ремонту;

б) герметичність поверхні теплообміну, що дає можливість уникнути змішування обох теплоносіїв;

в) надійність у роботі.

Конструктивні вимоги до теплообмінних апаратів:

а) надійна компенсація неоднакових температурних наванта­жень корпуса і поводжень корпуса і поверхні теплообміну;

б) компактність, що визначає його масові і геометричні дані (компактність характеризується відношенням поверхні тепло-

обміну F до об'єму теплообмінного апарата V); чим більше це відношення, тим компактніший апарат).

в) загальна простота і технологічність конструкції тепло­обмінного апарата.

Кожухотрубні теплообмінники. Найпоширеніші в промисло­вості, дають можливість створювати значні поверхні теплообміну в одному апараті, прості у виготовленні і надійні в експлуатації.

На рис. 4.23 зображено вертикальний кожухотрубний однохо-довий теплообмінник, що складається з корпусу 2, приварених до нього нерухомих трубних решіток 3, пучка труб 4, кінці яких закріплені в трубних решітках розвальцюванням або зварюван­ням. До трубних решіток прикріплені кришки 1. Один з тепло­носіїв І рухається всередині труб, а другий II — у просторі між ко­жухом і трубами (в міжтрубному просторі).

Через малу швидкість руху теплоносіїв одноходові тепло­обмінники мають низькі коефіцієнти тепловіддачі. Щоб збільши­ти швидкість руху теплоносіїв, застосовують багатоходові тепло-

обмінники (рис. 4.24), в яких пучок труб за допомогою попереч­них перегородок 1, встановлених у кришках, розділений на кілька секцій (ходів), по яких теплоносій І проходить послідовно. Швидкість руху теплоносія II в міжтрубному просторі підвищу­ють, встановлюючи ряд сегментних перегородок 2. З двох тепло­носіїв, що рухаються в трубах і в міжтрубному просторі, треба збільшувати швидкість руху в першу чергу того, в якого при теп­лообміні вищий термічний опір.

Труби в трубних решітках розміщують переважно по периме­тру правильного шестикутника (рис. 4.25, а). Для даного випад­ку, обчислюючи загальну кількість п труб в теплообміннику, ви­ходять з кількості труб а, розміщених на стороні найбільшого шестикутника

(4.33)

Кількість труб, розміщених по діагоналі найбільшого шести­кутника, знаходять за формулою

, (4.34)

При закріплені труб у трубних решітках розвальцьовуванням крок t розміщення труб вибирають залежно від їхнього зовніш­нього діаметра в межах

(4.35)

При закріплені труб зварюванням крок розміщення труо ви-

бирають меншим

Діаметр D теплообмінника визначають із співвідношення

(4.36)

Іноді труби розміщують по периметрах квадратів (рис. 4.25, б) або по концентричних колах (рис. 4.25, в).

При проектуванні кожухотрубних теплообмінників тепло­носій, що найбільше забруднює поверхню теплообміну, спрямо­вують у труби (трубний простір), які легше очищати.

При різниці температур між кожухом і трубами понад 50 °С або при значній довжині труб застосовують кожухотрубні тепло­обмінники з різними компенсаторами температурних наванта­жень.

Двотрубні теплообмінники типу "труба в трубі". Тепло­обмінники цього типу складаються з кількох послідовно з'єдна­них елементів, утворених двома концентрично розміщеними тру-

бами. Один теплоносій рухається у внутрішніх трубах, а дру­гий — в кільцевому зазорі між внутрішніми і зовнішніми трубами.

Заглибні теплообмінники звичайно виготовляють у вигляді змі­йовиків. Змійовик занурений в рідину, яку нагрівають або охолод­жують теплоносієм, що рухається всередині змійовика. Коефіцієнт теплопередачі в цих теплообмінниках порівняно низький, але через простоту виготовлення вони набули значного поширення.

Зрошувальні теплообмінники складаються із змійовиків, зро­шуваних ззовні рідким теплоносієм (звичайно водою), і застосо­вуються переважно як холодильники. Змійовики роблять з пря­мих горизонтальних труб розташованих одна над одною і послідовно сполучених між собою калачами. Зверху змійовики зрошують водою, яка рівномірно розподіляється коритечком із зубчастими краями.

Спіральні теплообмінники. В спіральних теплообмінниках по­верхню теплообміну утворюють два зігнуті у вигляді спіралей ме­талеві листи внутрішні кінці яких приварені до перегородки. Зовнішні кінці листів зварені один з одним. Між листами утворю­ються канали прямокутного перерізу, в яких рухаються теплоносії. З торців канали закриті плоскими кришками 4 на прокладках.

Пластинчасті теплообмінники використовують у промисло­вості для пастеризації і охолодження молока, пива, вина та інших продуктів. Поверхню теплообміну в них створюють гофровані па­ралельні пластинки, встановлені на горизонтальних штангах. Кінці штанг закріплені на стояках. У складеному вигляді пластини стиснуті між натискною плитою за допомогою гвинта. Ущільнені пластини гумовими прокладками. Велика прокладка обмежує ка-

нал для проходження рідини між пластинами. Малі кільцьові про­кладки ущільнюють отвори, крізь які протитєчійно до рідини над­ходить і виходить інша рідина II. Продукт у пластинчастому теп­лообміннику обробляється тонким шаром (3...6) млі, що сприяє інтенсифікації процесу. Завдяки рифленій поверхні пластин при порівняно малій швидкості руху рідини (0,3...0,8) м/с за рахунок штучної турбулізації потоку досягають високих коефіцієнтів теп­лопередачі при незначному гідравлічному опорі.

Рис. 4.26. Поверхня з ребристих труб ребристого теплообмінника

Конструктивні, експлуатаційні та теплотехнічні переваги пластинчастих теплообмінників сприяють дедалі ширшому за­стосуванню. Недолік їх — велика кількість довгих ущільнюваль­них прокладок.

Ребристі теплообмінники. Для більшої компактності тепло­обмінників використовують вторинні поверхні (ребра) з боку теп­лоносія, що відрізняється низьким значенням коефіцієнта теп­ловіддачі. На рис. 4.26 зображена поверхня з оребрених труб, утво­рена за допомогою круглих ребер, закріплених на зовнішній по­верхні круглих труб. Таку конструкцію часто використовують у теплообмінниках газ — рідина або газ — пара, в яких при опти­мальній конструкції поверхня з боку газу має бути максимальною, наприклад, в колориферах для нагрівання повітря парою в сушиль­них установках, а також в апаратах повітряного охолодження.

Оболонкові теплообмінники. В них нагрівання і охолодження здійснюють поряд з іншими технологічними процесами. Поверх­ню теплообміну в них утворюють стінки самого апарата (рис. 4.27). До корпуса 2 кріпиться оболонка 3 за допомогою фланця 1.

 







Дата добавления: 2015-10-12; просмотров: 2175. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.007 сек.) русская версия | украинская версия