Ставка на... победу!
Состояние науки и техники на каждый момент времени характеризуется общим уровнем развития науки и техники, то есть всей совокупностью знаний и технических возможностей, накопленных предыдущим развитием. Эту совокупность великий Вернадский назвал ноосферой, или сферой разума. Он пришел к выводу, что развитие ноосферы есть закономерный, природный процесс, не зависящий от воли и желания отдельных людей1. Из рассмотренного выше примера хорошо видно такое важное условие как преемственность развития науки и техники. Суть его в том, что любое новое достижение науки и техники обязательно опирается на предыдущие. Действительно, Резерфорд не мог бы провести свои знаменитые эксперименты, если бы не было открыто явление радиоактивности. Томпсон не открыл бы электрон, а Рентген - Х-лучи, если бы в свое время не была изобретена катодная трубка. А последняя не могла быть создана без работ М.Фарадея, Э.Ленца, А.Ампера, Г.Эрстеда и многих других предшественников. Второе важное условие развития науки и техники - взаимовлияние между различными областями науки и техники. Суть его в том, что толчком к развитию какой-либо области науки или техники очень часто становится достижение иной, подчас весьма далекой, области. Представление о том, что физику развивают только физические идеи, биологию - только биологические, авиацию - только достижения в самолетостроении и т.д., ошибочно. В реальности все они очень тесно переплетены друг с другом. На рис.40 условно показаны возможные взаимовлияния между различными областями науки и техники. На приведенном выше примере открытия атома нетрудно выявить такие взаимовлияния. Рассмотрим еще несколько примеров. На рубеже XVI-XVII вв. была создана новая техническая система - микроскоп. В конце XVII века голландский мастер А.Левенгук довел увеличение микроскопа до 300 раз, и это техническое изобретение произвело подлинный переворот в биологии, дало жизнь микробиологии. Но и современная биология накопила огромный потенциал знаний, которым может щедро поделиться с техникой будущего. Уже сейчас разрабатываются методы извлечения металлов из руды и морской воды с помощью микроорганизмов. В нашей стране созданы первые действующие модели биоэлектростанций на ферментах с к.п.д. 80-90%! Во многих странах разрабатываются высокочувствительные биодатчики на базе растительных и животных тканей для обнаружения различных веществ и излучений. Захватывающие перспективы открываются в области создания биокомпьютеров. Возникла даже новая область техники - биоэлектроника или молекулярная электроника. Но и это не предел. Одна хромосома человека при объеме чуть более 10 кубических микронов хранит информацию, для размещения которой потребовалось бы четыре тысячи томов по пятьсот страниц в каждом! Фантастическая плотность информации, перед которой самые перспективные запоминающие устройства - НИЧТО! Итак, появление нового становится возможным, как только в общем уровне развития науки и техники возникают соответствующие предпосылки. Кстати, именно этим и объясняется эффект параллельных открытий и изобретений, когда люди, работая независимо друг от друга, почти одновременно приходят к одному и тому же результату. Вот несколько таких примеров. 1846 год. Астрономы Ж.Леверье и Дж.Адамс независимо друг от друга предсказали существование планеты Нептун. 1859 год. Биологи Ч.Дарвин и А.Уоллес независимо друг от друга сформулировали основные положения теории эволюции. 1876 год. А.Белл заявил на изобретение телефона. Два часа спустя (!) с той же идеей в Патентном бюро появился Э.Грей. 1897 год. В январе немецкий физик Э.Вихерт открыл электрон, а три месяца спустя о свое открытии сообщил Томпсон. 1954 год. Физики А.М.Прохоров, Н.Г.Басов и Ч.Таунс почти одновременно создали квантовый генератор. 1962 год. Советский физик Ю.Н.Денисюк и сотрудники Мичиганского университета Э.Лейт и Ю.Упатниекс получили первые голографические изображения. С точки зрения проблемы правильного выбора творческой Цели необходимо упомянуть и о противоположных примерах, когда попытки открытий и изобретений оставались незамеченными или вообще не достигали своей цели. Первая половина XIII века. Иордан Неморарий сформулировал основные законы движения, которые четыре века спустя заново переоткрыл Галилей. Первая половина XIX века. Английский математик Ч.Бэббидж сформулировал принципы работы вычислительной машины и разработал проект механического "компьютера". Реализовать идею на механическом уровне было невозможно. Только достижения электроники позволили к 1946 году построить первый компьютер. 1868 год. Французский ученый Н. де Сен-Виктор обнаружил потемнение фотопластинки в присутствии солей урана. Но сообщение было забыто, поскольку наука еще не приблизилась к необходимости понимания глубинных основ строения вещества, возникшей после открытия В.Рентгена. А спустя 28 лет А.Беккерель в аналогичных опытах открыл радиоактивность. 1869 год. Г.Мендель опубликовал открытые им законы генетики. Но потребовались многие открытия, в частности, открытие хромосом, чтобы роль наследственности была оценена по достоинству. В 1900 году законы генетики переоткрыли сразу три биолога - Э.Чемрак, Г. де Физ и К.Корренс. 1920 год. Польский физик М.Вольфке предложил новую идею получения изображений, ничем не отличающуюся от идеи голографии, предложенной через 27 лет Д.Габором. Идея была неосуществима из-за отсутствия когерентных источников света. Главная ошибка, которая совершалась в этих случаях и многих других, состояла в опережении возможностей и потребностей общего уровня развития науки и техники, т.е. в нарушении условий преемственности и взаимовлияния. Развитие науки и техники можно сравнить с водохранилищем. Пока уровень низок, вода надежно заперта. Но вот уровень приближается к верхнему краю, в отдельных, наиболее низких местах, вода тоненькими потоками устремляется вперед. По мере подъема воды таких мест становится все больше и больше. И, наконец, наступает момент, когда вода захлестывает плотину и бурным потоком устремляется дальше... к новой плотине. Итак, развитие науки и техники - это сложный самоорганизующийся, саморегулирующийся процесс, пронизанный множеством прямых и обратных связей, процесс накопления и преодоления множества больших и малых противоречий. Здесь нет мелочей: каждый, даже небольшой шаг вперед повышает общий уровень, создает предпосылки для последующих, более крупных шагов. Знание таких важных условий развития науки и техники, как преемственность и взаимовлияние, позволяют сформулировать два простых правила, следование которым поможет избежать грубых ошибок в постановке творческих Целей.
Таким образом, главная задача творческой личности (социально полезная функция) - повышение существующего общего уровня развития науки и техники. Каждый новый шаг вперед должен надежно подкрепляться существующими знаниями и техническими возможностями. * * * Здесь въедливый читатель может возмутиться. - Позвольте! Автор пишет о барьере НЕВОЗМОЖНОГО, о смелых, необычных идеях, а сам призывает к выбору в качестве творческой Цели насущных проблем развития науки и техники?! Противоречия в этом нет. Выбор насущной проблемы вовсе не признак приземленности или бездарности. Уже упоминавшиеся примеры творческих Целей говорят сами за себя: творческая Цель может быть сколь угодно дерзкой, необычной даже при опоре на существующий уровень развития науки и техники. Дальность же "замаха" (типа "а вот я займусь машиной времени!") отнюдь не характеризует степень гениальности. Скорее даже наоборот... Пренебрегая объективным развитием науки и техники, мы рискуем уподобиться небезызвестной Моське из бессмертной басни Крылова. Степень талантливости, гениальности характеризуется не самой Целью, а ее результатами.
|