Слайд 2. Как видно из таблиц, уровень развития пиролиза в России крайне низок, так как со строительством установки ЭП-450 в Нижнекамске (1970—1976)
Как видно из таблиц, уровень развития пиролиза в России крайне низок, так как со строительством установки ЭП-450 в Нижнекамске (1970—1976), не было построено ни одной установки. Наращивание мощности в РФ, на данный момент, осуществляется за счёт реконструкции существующих установок пиролиза, например, реконструкции этиленового комплекса «Этилен-450» ОАО «Нижнекамскнефтехим» (г. Нижнекамск р. Татарстан) с наращиванием мощности с 450 тыс. т/год до 600 тыс. т/год. Также, стоит упомянуть о решении руководством ОАО «Нижнекамскнефтехим» строительства новой этиленовой установки мощностью 700 тыс. т/год с дальнейшим наращиванием мощности до 1 млн т/год, что составит треть производимого этилена в стране. Кроме того, предприятиями ОАО «Казаньоргсинтез» (г. Казань р. Татарстан) и ООО «Ставролен» (г. Буденновск Ставропольский район) в планах модернизация своих этиленовых производств, с увеличением мощности на 600 тыс. т/год.
Технологическое оформление Слайд 18. За период развития термического пиролиза углеводородов в конструкцию печей пиролиза и в технологическую схему производства низших олефинов был внесён ряд важных усовершенствований. Введение в схему печных блоков закалочно-испарительных аппаратов позволило утилизировать тепло продуктов пиролиза с получением пара высокого давления. Наличие собственного пара высокого давления привело к замене компрессоров с электрическим приводом на компрессоры с паровой турбиной, что привело к снижению на порядок себестоимости продуктов пиролиза. Полный переход с абсорбционной схемы газоразделения продуктов реакции на низкотемпературное фракционирование привело к получению низших олефинов более высокого качества — полимеризационной чистоты. В совокупности все изменения в технологии производства низших олефинов способствовали к переходу на высокие мощности единичных установок. Если в начале 1960-х годов мощность передовых установок пиролиза составляла порядка 100—140 тыс.т/год, по этилену, то на данный момент мощность достигает 1,0-1,4 млн.т/год. Рост единичных мощностей этиленовых установок сопровождался значительным снижением удельных затрат сырья и энергии на производство. Кроме того, с ростом мощности установок пиролиза, изначально предназначавшихся только для получения этилена, стало экономически целесообразной выделение остальных газовых продуктов, а затем получение бензола и других ценных компонентов из жидких продуктов, что дополнительно повысило эффективность процесса. Современное производство этилена включает следующие узлы: подготовку сырья, непосредственно сам пиролиз, первичное фракционирование и разделения продуктов пиролиза, компримирование, осушка, глубокое охлаждение пирогаза и газоразделение. Узел пиролиза состоит, как правило, из нескольких печей пиролиза. Суммарные годовые мощности по этилену всех печей, без учёта печей находящихся в резерве (на регенерации), определяют мощность всей установки пиролиза. На выходе из ЗИА продукты пиролиза проходят вторичную закалку путём прямого впрыскивания смолы пиролиза (так называемое закалочное масло) до температур не выше 200 °C. Узел первичного фракционирования и разделения продуктов пиролиза состоит из систем фракционирующих колонн и отстойников. В результате, продукты пиролиза разделяются на технологическую воду, на тяжёлую смолу (температура начала кипения ~ 200 °C), на лёгкую смолу (пиробензин), на предварительно облегченный пирогаз (у/в С1-С4 с содержанием у/в С5-С8). Далее, легкий пирогаз поступает на узел компримирования, состоящий из многоступенчатого компрессора. Между стадиями компрессии предусмотрены теплообменники и сепараторы для охлаждения компримированного пирогаза и его сепарации с дополнительным выделением влаги и пироконденсата. На этой стадии пирогаз сжимается до давлений 3,7 — 3,8 МПа для повышения температур кипения разделяемых продуктов. Также между стадиями компримирования предусмотрен узел очистки пирогаза от кислых газов (СО2 Н2S), представляющий собой насадочную колонну, в которой происходит хемосорбция кислых газов раствором NaOH. Сжатый пирогаз поступает на узел осушки — в адсорберы с заполненными молекулярными ситами, где происходит полное удаление воды. На узле глубокого охлаждения пирогаза происходит ступенчатое захолаживание пирогаза до температуры минус 165 °C. В таких условиях практически только водород находится в газообразном состояние. Далее охлаждённый пирогаз (в жидком состояние, без водорода) параллельно и последовательно проходит через четыре ректификационные колонны, в которых происходит выделение метана, этан - этиленовой (ЭЭФ), пропан-пропиленовой (ППФ), С4 фракции и пиробензина. ЭЭФ и ППФ далее проходят гидроочистку от ацетиленистых углеводородов (и пропадиена в ППФ) и далее ректификацией выделяются этилен и пропилен. Оставшиеся этан и пропан используются как рецикловое пиролизное сырьё. Пиролизная С4 фракция используется для выделения экстрактивной дистилляции дивинила и бутиленов. Пиролизная смола, полученная на стадии первичного фракционирования используется для получения технического углерода. На крупнотоннажных этиленовых установках (от 250 тыс. т/год и выше) лёгкие смолы (пиробензин) обычно перерабатываются с выделением у/в С5, БТК фракции (ароматические углеводороды С6-С8) и фракции С9. БТК фракция, состоящая на 90 % масс из ароматических углеводородов, используется для получения бензола термическим или каталитическим гидродеалкилированием или для выделения бензола, толуола и ксилола экстракцией и экстрактивной дистилляцией. Из у/в С5 далее получают изопрен, циклопентадиен (дициклопентадиен в товарной форме), пипирилены. Фракция С9 используется для получения нефтеполимерных смол.
Перспективы развития
Следует отметить 2 основных направления исследования в области пиролиза, это: каталитический пиролиз и пиролиз с добавлением различных веществ. При использовании различных катализаторов значительно повышаются селективность и выходы некоторых основных продуктов. При этом, можно значительно снизить температуру пиролиза. Основными недостатками каталитического пиролиза несомненно является высокое коксование катализаторов и необходимость создания новых установок и нового технологического оборудования. И раз до сих пор не появились полноценные промышленные установки каталитического пиролиза, значит, достаточно сложно создать таковые, которые были бы надежны и просты в эксплуатации. Хотя японцы интенсивно ведут исследования в этой области, и в печати стабильно появляются заметки об испытаниях в Японии новой установки каталитического пиролиза. По второму направлению было испробовано огромное количество соединений с их дозировкой от десятков ppm до десятков процентов к сырью. Эти вещества инициируют реакции разложения сырья и/или ингибируют побочные, вторичные процессы. В промышленности широкое распространение получило использование небольших дозировок (50—300 ppm) веществ способствующих снижению образования кокса при пиролизе. Из этих веществ выделяются серосодержащие соединения (такие как диметилдисульфид, третбутилполисульфид), фирмой «Nalco» активно продвигается ингибитор коксообразования на основе фосфоросодержащих веществ. Принцип действия этих веществ заключается в пассивации активных центров на стенке пирозмеевика. Однако и у этого направления достаточно большое количество недостатков, таких как: сложность равномерного дозирования, равномерного распределения по паросырьевому потоку, ограничение использования ингибиторов коксообразования при пиролизе сырья с содержанием серы (прямогонный бензин, атмосферный газойль). Из последних разработок следует отметить использование различных физических полей (акустических, электромагнитных) на процесс пиролиза. Эффект от действия этих полей примерно такой же, как и при использовании катализаторов. Кроме того, не утихает интерес к плазмохимическим технологиям с использованием низкотемпературной плазмы, позволяющие проводить реакции при температурах 1000 — 10 000 К. Основным преимуществом плазмохимических реакций является возможность использования малоценного или трудно перерабатываемого сырья. Например, при таких температурах можно без проблем разложить метан. На фоне быстрого роста цен на нефть данный процесс весьма перспективен.
Слайд 2. В промышленных условиях пиролиз углеводородов осуществляют при температурах 800—900°С и при давлениях, близких к атмосферному (на входе в пирозмеевика ~ 0,3 МПа, на выходе — 0,1 МПа избыточных). Время пребывания сырья в зоне реакции составляет 0,1 — 0,5 сек.
|