Подготовительные операции.
101. Rudnev V. Handbook of Induction Heating. Marcel Dekker Inc., New York, 2003.
Приложение 1
ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ МИКРОЭЛЕКТРОНИКИ
Екатеринбург 2008 г.
Составлено Красноперов.Г. В.
Оглавление: 1. Введение. 4 2. Подготовительные операции. 4 3. Эпитаксия. 6 4. Термическое окисление. 8 5. Легирование. 11 6. Травление. 16 7. Техника масок. 18 8. Нанесение тонких пленок. 25 9. Металлизация. 31 10. Сборочные операции.. 34 11. Технология тонкопленочных гибридных ИС.. 37 12. Технология толстопленочных гибридных ИС.. 43 13. Дополнительная литература.. 46
Введение. Технология полупроводниковых ИС развилась на основе планарной технологии транзисторов, а последняя, в свою очередь, впитала в себя весь предшествующий опыт производства полупроводниковых приборов. Поэтому чтобы разбираться в технологических циклах изготовления ИС, необходимо ознакомиться с типовыми технологическими процессами, из которых эти циклы складываются. Технология ГИС также зародилась не на пустом месте, а обобщила и развила те методы нанесения пленок, которые ранее использовались в радиотехнической промышленности, машиностроении и оптике.
Подготовительные операции. Монокристаллические слитки кремния, как и других полупроводников, получают обычно путем кристаллизации из расплава — методом Чохральского. При этом методе стержень с затравкой (в виде монокристалла кремния) после соприкосновения с расплавом медленно поднимают с одновременным вращением (рис. 1.1). При этом вслед за затравкой вытягивается нарастающий и застывающий слиток. Кристаллографическая ориентация слитка (его поперечного сечения) определяется кристаллографической ориентацией затравки. Типовой диаметр слитков составляет в настоящее время 150 мм, а максимальный может достигать 300 мм и более. Длина слитков может достигать 3 м и более, но обычно она в несколько раз меньше. Слитки кремния разрезают на множество тонких пластин (толщиной 0,4-0,5 мм), на которых затем изготавливают интегральные схемы или другие приборы. Во время резки слиток прочно закрепляют, причем очень важно обеспечить перпендикулярное расположение слитка относительно режущих полотен или дисков с тем, чтобы пластины имели необходимую кристаллографическую ориентацию. Поверхность пластин после резки весьма неровная: размеры царапин, выступов и ямок намного превышают размеры будущих элементов ИС. Поэтому перед началом основных технологических операций пластины многократно шлифуют, а затем полируют. Цель шлифовки, помимо удаления механических дефектов, состоит в том, чтобы обеспечить необходимую толщину пластины (150-250 мкм), недостижимую при резке, и параллельность плоскостей. Шлифовку осуществляют на вращающихся шлифовальных кругах. Шлифующим агентом являются суспензии из микропорошков, размер зерен которых выбирают все меньшим при каждом цикле шлифовки, вплоть до 0,3-0,5 мкм. По окончании шлифовки на поверхности все же остается механически нарушенный слой толщиной несколько микрон, под которым расположен еще более тонкий, так называемый физически нарушенный слой. Последний характерен наличием «незримых» искажений кристаллической решетки и механических напряжений, возникающих в процессе шлифовки. Полировка состоит в удалении обоих нарушенных слоев и снижении неровностей поверхности до уровня, свойственного оптическим системам — сотые доли микрона. Помимо механической (с помощью еще более мелкозернистых суспензий), используется химическая полировка (травление), т.е. по существу растворение поверхностного слоя полупроводника в тех или иных реактивах. Выступы и трещины на поверхности стравливаются быстрее, чем основной материал, и в целом поверхность выравнивается. Достигаемая в процессе шлифовки и полировки параллельность плоскостей пластины составляет единицы и даже доли микрона на сантиметр длины. Важным процессом в полупроводниковой технологии является также очистка поверхности от загрязнений органическими веществами, особенно жирами. Очистку и обезжиривание проводят в органических растворителях (толуол, ацетон, этиловый спирт и др.) при повышенной температуре. Травление, очистка и многие другие процессы сопровождаются отмывкой пластин в деионизованной воде. Деионизация осуществляется в специальных установках путем пропускания предварительно дистиллированной воды через гранулированные смолы, в которых благодаря химическим реакциям происходит связывание растворенных ионов. Степень деионизации оценивается по удельному сопротивлению воды, которое обычно лежит в пределах 10-20 МОм ■ см и выше (удельное сопротивление биди-стиллированной воды не превышает 1-2 МОм•см).
|