Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторное произведение двух векторов, его свойства





Определение 2.21. Векторным произведением вектора на вектор называется вектор (рис. 2.15), у которого: 1) длина численно равняется площади параллелограмма, построенного на этих векторах.

2) вектор перпендикулярен к плоскости, в которой лежат векторы и , т.е. и ;

3) вектор направлен таким образом, чтобы кратчайший поворот от вектора к вектору осуществлялся против часовой стрелки, если смотреть на него из конца вектора .

Векторное произведение векторов и обозначается символом или .

Из определения вытекает, что . Свойства:

1) - антикоммутативность;

2) - ассоциативность относительно скалярного множителя;

3) - дистрибутивность относительно сложения;

4) означает коллинеарность векторов и .

Для векторного произведения основных ортов справедлива такая таблица (табл.2.1).

Таблица 2.1

 
 
 
 

С использованием этой таблицы можно доказать, что если векторы и заданные своими координатами в прямоугольной системе координат т.е.

; ,

то

.

Если и коллинеарны, то и из (2.31) получим, что , - условие коллинеарности векторов.

Векторное произведение может использоваться для вычисления площади параллелограмма, а значит, треугольника и любого плоского многоугольника, а также для вычисления момента силы. В случае, когда тело неподвижно закреплено в т. , а в т. этого тела приложена сила , тогда момент силы , а величина момента равна .

Пример Сила приложена к точке . Определить момент этой силы относительно начала координат.







Дата добавления: 2015-10-12; просмотров: 385. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия