Студопедия — Скалярное произведение двух векторов и его свойства
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное произведение двух векторов и его свойства






Определение. Скалярным произведением двух векторов и называется число, равное произведению модулей векторов и на косинус угла между ними.

Скалярное произведение векторов и обозначают , или .

Итак, по определению

,

где - угол между векторами та .

Если хотя бы один из векторов нулевой, то угол не определен и скалярное произведение по определению считают равным нулю.

Поскольку по формуле

то формулу скалярного произведения можно записать еще и таким образом:

или

.

Таким образом, скалярное произведение двух векторов равно произведению модуля одного из векторов на проекцию второго вектора на направление первого.

Скалярное произведение имеет следующие свойства:

1.Скалярное произведение коммутативно, то есть для любых векторов . (2.14)

2. , т.е. для произвольного вектора его скалярный квадрат равняется квадрату модуля этого вектора. Отсюда . (2.15)

3. Скалярное произведение равно нулю тогда и только тогда, когда сомножители ортогональны или хотя бы один из них равен нулю.

4. Скалярное произведение ассоциативно относительно скалярного множителя, то есть . (2.16)

5. Скалярное произведение дистрибутивный относительно сложения, то есть для произвольных трех векторов имеет место равенство

.

6. Векторы ортонормального базиса удовлетворяют соотношениям:

,

.

Рассмотрим теперь два вектора и , которые заданы координатами в прямоугольной системе координат: ; ,

Т.е. , .

Тогда, пользуясь перечисленными свойствами скалярного произведения, получим,

, скалярное произведение двух векторов в ортонормальном базисе равно сумме произведений их соответствующих координат.

, модуль вектора равен корню квадратному из суммы квадратов его координат.

Косинус угла между двумя векторами .

Для ортонормального базиса получим:

и условие ортогональности двух векторов приобретает вид: .

Если , ,

при ,

при .







Дата добавления: 2015-10-12; просмотров: 370. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия