Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное произведение двух векторов и его свойства





Определение. Скалярным произведением двух векторов и называется число, равное произведению модулей векторов и на косинус угла между ними.

Скалярное произведение векторов и обозначают , или .

Итак, по определению

,

где - угол между векторами та .

Если хотя бы один из векторов нулевой, то угол не определен и скалярное произведение по определению считают равным нулю.

Поскольку по формуле

то формулу скалярного произведения можно записать еще и таким образом:

или

.

Таким образом, скалярное произведение двух векторов равно произведению модуля одного из векторов на проекцию второго вектора на направление первого.

Скалярное произведение имеет следующие свойства:

1.Скалярное произведение коммутативно, то есть для любых векторов . (2.14)

2. , т.е. для произвольного вектора его скалярный квадрат равняется квадрату модуля этого вектора. Отсюда . (2.15)

3. Скалярное произведение равно нулю тогда и только тогда, когда сомножители ортогональны или хотя бы один из них равен нулю.

4. Скалярное произведение ассоциативно относительно скалярного множителя, то есть . (2.16)

5. Скалярное произведение дистрибутивный относительно сложения, то есть для произвольных трех векторов имеет место равенство

.

6. Векторы ортонормального базиса удовлетворяют соотношениям:

,

.

Рассмотрим теперь два вектора и , которые заданы координатами в прямоугольной системе координат: ; ,

Т.е. , .

Тогда, пользуясь перечисленными свойствами скалярного произведения, получим,

, скалярное произведение двух векторов в ортонормальном базисе равно сумме произведений их соответствующих координат.

, модуль вектора равен корню квадратному из суммы квадратов его координат.

Косинус угла между двумя векторами .

Для ортонормального базиса получим:

и условие ортогональности двух векторов приобретает вид: .

Если , ,

при ,

при .







Дата добавления: 2015-10-12; просмотров: 399. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия