Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1. Алгебраическая формакомплексного числа имеет вид





1. Алгебраическая форма комплексного числа имеет вид

, (1)

2. Тригонометрическая – , (2)

3. Показательная – . (3)

Чтобы перейти от алгебраической к тригонометрической и показательной форме, нужно определить модуль и аргумент комплексного числа по формулам:

, (4)

(5)

где - действительная часть комплексного числа, - мнимая часть комплексного числа.

Перейдем от алгебраической формы комплексного числа к тригонометрической и показательной форме.

Сначала запишем , . По формуле (4) определим модуль комплексного числа :

.

Изобразим комплексное число на комплексной плоскости (рис. 2).

Рис. 2.

Из рисунка видно, что аргумент . Найдем значение аргумента по формуле(5). Поскольку , то .

По формулам (2) и (3) соответственно запишем в тригонометрической и в показательной форме ,

.

Аналогично представим число в тригонометрической и в показательной форме (рис. 3) , .

.

Рис. 3

,

.

.

2. Выполним действия:

1) в тригонометрической форме.

Чтобы умножить два комплексных числа в тригонометрической форме, нужно перемножить их модули, а аргументы сложить:

.

2) в показательной форме.

Чтобы поделить два комплексных числа в показательной форме, нужно поделить их модули, а аргументы отнять.

.

3) в тригонометрической форме.

Чтобы возвести комплексное число в -ю степень, используется формулу Муавра .

.

В примере учтено то, что ; .

4) в показательной форме.

Чтобы извлечь корень - й степени из комплексного числа, используется формула , где .

.

, .

Если , то ;

; то .

то .

Пример 2. Найти действительные числа из условия равенства двух комплексных чисел:

Решение

.

Выделим в обеих частях равенства действительные и мнимые части:

Используя условие равенства двух комплексных чисел, составим систему:

Ответ:

Пример 3. Найти модуль и главные значения аргумента комплексных чисел:

Решение

а) , так как вектор, изображающий комплексное число, лежит на положительной полуоси Оу;

б) так как вектор, изображающий комплексное число, лежит на отрицательной полуоси Оу;

в)


г)

д)

или

 

е)

 

є)

.

 

 

Пример 4. Вычислить:

а) в)
б) г)

 







Дата добавления: 2015-10-12; просмотров: 449. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия