Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метацентрические формулы остойчивости и их практическое применение





Как было рассмотрено в § 5.4, при наклонении судна, действует пара сил, момент которой характеризует степень остойчивости.

При малых равнообъемных наклонениях судна в поперечной плоскости (рис.40) (ЦВ перемещается в плоскости наклонения), поперечный востанавливающий момент может быть представлен выражением

mΘ = P = γV ,

где плечо момента = lΘ называют плечом поперечной остойчивости.

Из прямоугольного треугольника mGK находим, что

lΘ = h sinΘ.

Тогда: mΘ = P h sinΘ = γV h sinΘ.

Или учитывая малые значения Θ и принимая sinΘ Θ0/57,3, получим метацентрическую формулу поперечной остойчивости:

mΘ = γV h Θ0/57,3.

Рассматривая по аналогии наклонения судна в продольной плоскости (рис.41), нетрудно получить метацентрическую формулу продольной остойчивости:

МΨ = P l Ψ = γV Н sin Ψ = γV Н Ψ 0/57,3,

где МΨ - продольный востанавливающий момент, а l Ψ - плечо продольной остойчивости.

 

 
 

Рис.40. Поперечное наклонение судна

 

На практике используют коэффициент остойчивости, являющийся произведением водоизмещения на метацентрическую высоту.

Коэффициент поперечной остойчивости

К Θ = γV h = Р h.

Коэффициент продольной остойчивости

КΨ = γV Н = Р Н.

С учетом коэффициентов остойчивости метацентрические формулы примут вид

mΘ = К Θ Θ0/57,3,

 
 

МΨ = КΨ Ψ 0/57,3.

 

 

Рис.41. Продольное наклонение судна

 

Метацентрические формулы остойчивости, дающие простую зависимость восстанавливающего момента от силы тяжести и угла

 

наклонения судна, позволяют решать ряд практических задач возникающих в судовых условиях. В частности, по этим формулам можно определить угол крена или угол дифферента, который получит судно от воздействия заданного кренящего или дифферентующего момента, при известной массе и метацентрической высоте. Наклонение судна под воздействием mкр диф) приводит к появлению обратного по знаку восстанавливающего момента mΘΨ) возрастающего по величине с нарастанием угла крена (дифферента). Нарастание угла крена (дифферента) будет происходить до тех пор, пока восстанавливающий момент не станет равным по величине кренящему моменту (дифферентующему моменту), т.е. до выполнения условия:

mΘ = mкр и МΨ = Мдиф.

После этого судно будет плавать с углами крена (дифферента):

Θ0 = 57,3 mкр /γV h,

Ψ 0 = 57,3 Мдиф /γV Н.

Полагая в данных формулах Θ = 10 и Ψ = 10, найдем величины момента кренящего судно на один градус, и момента, дифферентующего судно на один градус:

m10 = γV h = 0,0175 γV h,

М10 = γV Н= 0,0175 γV Н.

В ряде случаев используется также величина момента дифферентующего судно на один сантиметр mД (§4.4.1.). При малом значении угла Ψ, когда tg Ψ Ψ, Ψ = (dн – dк)/L = Df / L.

С учетом этого выражения метацентрическая формула для продольного восстанавливающего момента запишется в виде:

МΨ = Мдиф = γV Н Df / L.

Полагая в формуле Df = 1 см = 0,01 м, получим:

mД = 0,01 γV Н/ L.

При известных значениях m1010 и mД, угол крена, угол дифферента и дифферент от воздействия на судно заданного кренящего или дифферентующего момента могут быть определены по простым зависимостям:

Θ0 = mкр./ m10; Ψ0 = Мдиф/ М10; Df = Мдиф/ 100 mД.

В приведенных выше рассуждениях предполагалось, что судно в исходном положении (до воздействия mкр или Мдиф) плавало прямо и на ровный киль. Если же в исходном положении судна крен и диф-

 

 

ферент отличались от нуля, то найденные значения Θ0, Ψ0 и Df следует рассматривать как добавочные (δΘ0, δΨ 0 , δDf).

С помощью метацентрических формул остойчивости можно определить также, какой необходимый кренящий или дифферентующий момент надо приложить судну, чтобы создать заданный угол крена или угол дифферента (с целью заделки пробоины в бортовой обшивке, окраски или осмотра гребных винтов). Для судна, плавающего в исходном положении без крена и дифферента:

mкр = γV h Θ0 /57,3 = m10 Θ0;

Мдиф = γV Н Ψ 0 /57,3 = М10 Ψ 0 или Мдиф = 100 Df mД.

Практически метацентрическими формулами остойчивости допустимо пользоваться при малых углах наклонения (Θ < 100 120 и Ψ < 50) но при условии, что при этих углах не входит в воду верхняя палуба или не выходит из воды скула судна. Они справедливы также при условии, что восстанавливающие моменты mΘ и МΨ противоположны по знаку моментам mкр и Мдиф, т.е., что судно обладает положительной начальной остойчивостью.

 







Дата добавления: 2015-10-12; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия