Студопедия — Пророк Божий и его Указание на Царя
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пророк Божий и его Указание на Царя






Лабораторная работа МК-2

 

1. Цель работы

Изучение гармонических колебаний физического маятника, экспериментальное исследование зависимости периода колебаний и приведенной длины маятника от его параметров, опытное определение ускорения свободного падения.

2. Подготовка к работе

Изучите по конспекту лекций и учебникам [1–3] понятия центра масс и момента инерции абсолютно твердого тела (АТТ), свойство аддитивности момента инерции и теорему Штейнера, уравнение динамики вращательного движения твёрдого тела, понятия физического маятника и его приведенной длины, зависимость периода колебаний от параметров маятника. Познакомьтесь с конструкцией лабораторной установки и методами экспериментального исследования физического маятника. Подготовьтесь к ответам на вопросы для допуска.

3. Краткая теория

Физическим маятником называют твёрдое тело, которое находится в поле силы тяжести и может свободно вращаться относительно горизонтальной оси, не проходящей через центр масс тела (рис. 1). Ось вращения маятника проходит через точку О,которая называется точкой подвеса. Эта точка оси находится на кратчайшем расстоянии от центра масс тела,который обозначен точкой С на рис 1. В положении равновесия тела отрезок ОС ориентирован вертикально, вдоль вектора силы тяжести. При отклонении тела от положения равновесия на угол a возникает момент силы тяжести относительно оси вращения, величина которого равна , (1)

где m – масса тела, g – ускорение свободного падения, l с – расстояние ОС от точки подвеса до центра масс тела.

В идеализированной модели колебаний физического маятника предполагается отсутствие сил трения, и уравнение динамики вращательного движения маятника запишется в виде:

, (2)

где I – момент инерции тела относительно оси вращения, – угловое ускорение. После преобразования (2) для малых колебаний, когда выполняется условие , это уравнение приобретает характерную форму уравнения гармонических колебаний

. (3)

Решением этого уравнения является гармоническая функция

, (4)

где Тпериод колебаний, амплитуда, фаза, начальная фаза колебаний. Подстановкой (4) в (3) можно показать, что период колебаний маятника равен

. (5)

Частным случаем физического маятника является математический маятник – материальная точка массой m, подвешенная в поле силы тяжести на невесомой нити длиной L = l с. Момент инерции математического маятника относительно оси колебаний, проходящей через точку подвеса, равен , поэтому период его колебаний определяется по формуле

. (6)

В теории колебаний вводится понятие приведенной длины физического маятника L,котораяравнадлине нити математического маятника с периодом колебаний равным периоду колебаний физического маятника. Из определения L и соотношений (5) и (6) следует равенство

, (7)

которое позволяет получить формулу для расчета приведенной длины

. (8)

Для исследования физического маятника в лабораторной работе используется конструкция в виде стержня длиной l 0, массой m cт, на котором закреплен диск радиуса R, массой m д. Стержень подвешен за один из его концов в точке О, как показано на рис. 2. Изменяя момент инерции I и положение центра масс l с маятника перемещением груза по стержню, можно исследовать зависимость периода колебаний и приведенной длины маятника от его параметров.

Основываясь на формуле (8) и считая стержень и диск однородными, абсолютно твердыми телами (АТТ), проведем анализ зависимости L (l). Момент инерции маятника относительно оси вращения представим как сумму моментов инерции стержня I cт и диска I д, определяя I д с помощью теоремы Штейнера

. (9)

В соответствии с правилами расчета координат центра масс АТТ расстояние l c выразим следующим образом:

. (10)

Подставляя (9) и (10) в (8), получаем зависимость приведенной длины маятника от его параметров в виде

. (11)

Если ввести неизменяемые в эксперименте параметры маятника

, (12)

и относительные величины и , зависимость (11) можно представить в удобном для анализа виде

. (13)

В лабораторной установке условие R << l 0 выполнено , поэтому в дальнейшем будем применять в (11) упрощенную формулу для величины с.

Анализ функции z(х) на экстремум показывает, что при значении

y

приведенная длина маятника минимальна и равна . На рис. 3 приведен график функции (13) при m д= m cт (с = 0,33, d = 0,5).

Рассмотрим методы экспериментального исследования физического маятника рассмотренной конструкции, предлагаемые в лабораторной работе.

Первый метод основан на измерении периодов колебания маятника Тi при различных значениях расстояния (i = 1,2,… N). Используя формулу (13), для каждого можно рассчитать приведенную длину маятника Li и найти экспериментальную зависимость Т (L). В соответствии с рассмотренной математической моделью колебательного процесса экспериментальный график функции

. (14)

должен быть линейным. Коэффициент наклона а этого графика определяется по результатам измерений методом наименьших квадратов и дает возможность рассчитать ускорение свободного падения по формуле

. (15)

Относительная погрешность измерения ускорения свободного падения этим методом совпадает с погрешностью измерения коэффициента а, которая определяется методом наименьших квадратов. Если полученная величина g совпадет в пределах погрешности измерения с табличным значением 9,81 м/с2, можно сделать вывод о согласовании рассмотренной теории физического маятника с экспериментом.

Второй метод исследования основан на сравнении теоретической зависимости в виде (13) с результатами независимых измерений расстояний li и соответствующих приведенных длин Li. В этом методе для различных экспериментальные значения zi определяются косвенно, путем измерений периодов колебаний Тi и расчетов по формуле:

. (16)

Если рассчитать теоретические значения z т i для каждой величины по формуле (13) и построить график подобно графику на рис. 3, то экспериментальные точки должны лежать вблизи теоретической кривой.

Согласование экспериментальных результатов с теорией в этом методе можно оценить, рассчитав в каждой точке относительные расхождения

(17)

и учитывая, что измерения величины zi являются равноточными.

4. Методика проведения эксперимента и описание установки

Общий вид лабораторной установки показан на рис. 4. Физический маятник представляет собой металлический стержень 1 известной массы m cт, длиной l 0. На стержне с помощью винта закреплен массивный диск 2 массой m д, который можно перемещать по стержню. Конец стержня шарнирно закреплен в специальной опоре 3 в шарикоподшипниковом подвесе, ось которого проходит через конец стержня и является осью качания маятника. Установка смонтирована на металлической стойке 4, укрепленной на столе с регулируемыми по высоте опорами 6. В установке имеется электронный секундомер 5 с ручным управлением. Диск 2 фиксируют на стержне 1 на определенном расстоянии l от точки подвеса до центра диска. Это расстояние измеряют миллиметровой линейкой, используя риски, нанесенные на стержне через 5 см.

Период колебаний Т определяют путем измерения времени 10 – 30 полных колебаний маятника секундомером. Измерения периода колебаний Тi проводят при 7 – 10 различных расстояниях li.

После расчета параметров с, d маятника по формулам (12), относительных расстояний и приведенных длин маятника по формуле

(18)

формируют массив экспериментальных данных , который используется для определения ускорения свободного падения g. В результате обработки этого массива методом наименьших квадратов получаем коэффициент наклона а линейной зависимости (14) и стандартную погрешность его определения s а. Используя соотношение (15), рассчитываем g, а погрешность его косвенного измерения оцениваем по формуле

, (19)

где tР – коэффициент, который определяется заданной доверительной вероятностью Р и числом измерений, – относительная среднеквадратическая погрешность измерения длины стержня l 0.

Во втором методе исследования проводится расчет по формуле (13) теоретических z т i, а по формуле (16) экспериментальных zi значенийотносительной приведенной длины маятника. При этом формируется два массива данных: экспериментальных и теоретических . Последний массив позволяет построить график зависимости в виде плавной кривой, подобный графику на рис. 3, на котором отмечают экспериментальные точки из массива .

Относительную погрешность совпадения опытных значений с теоретическими z т i можно оценить, рассчитав относительные расхождения d i по формуле (17) и среднеквадратическое отклонение этой случайной величины известным методом.

5. Порядок выполнения работы

5.1. Подготовка установки к работе (выполняет лаборант).

5.1.1. Регулируя высоту опор 6, установите стол установки так, чтобы он находился в устойчивом положении в процессе колебаний маятника.

5.1.2. Проверьте правильность работы используемого секундомера.

5.2. Измерение периодов колебаний маятника при различных значениях l.

5.2.1. Измерьте миллиметровой линейкой длину стержня l 0. Результат измерения l 0, величины массы диска m д и массы стержня m ст, указанные на установке, запишите в таблицу. 5.2.2. Пользуясь делениями, нанесенными на стержне 1, и винтом крепления зафиксируйте диск 2 так, чтобы его плоскость совпадала с плоскостью колебаний, а центр диска находился на расстоянии l 1 = 5 см от точки подвеса.

5.2.3. Отклоните маятник на небольшой угол (6 – 100) и отпустите. После установления колебаний в момент максимального отклонения маятника от положения равновесия включите отсчет времени секундомером.

5.2.4. Отсчитайте десять полных колебаний маятника и остановите отсчет времени секундомером, зафиксировав время t 1 десяти периодов колебаний. Запишите полученное время в таблицу.

5.2.5. Аналогичные измерения времени десяти периодов колебаний t 2t 9 проведите при других расстояниях li, перемещая каждый раз диск на 5 см.

 

Таблица

l 0 = (м), m ст = (кг), m д = (кг)
li, cм                  
, с                  
, с2                  
z т i                  
Li = z т i l 0, м                  
хi                  
zi                  
                 

 

6. Обработка результатов измерений и оформление отчёта

6.1. Для каждого значения li по данным таблицы рассчитайте квадрат периода колебаний и запишите результаты расчетов в таблицу.

6.2. Рассчитайте величины , параметры маятника с, d по формулам (12), относительные z т i по формуле (13) и абсолютные Li = z т i l 0 приведенные длины маятника. Запишите результаты расчетов в таблицу.

6.3. Запустите на компьютере программу «Расчет МНК», введите в таблицу программы значения массива данных , запишите результаты расчета коэффициента наклона а линейной зависимости (14) и погрешности его экспериментального определения s а в отчет по лабораторной работе.

6.4. Ориентируясь на график, изображенный на компьютере, постройте график зависимости (14), проведя прямую линию через точки с координатами , . Отметьте на графике все экспериментальные точки.

6.5. Рассчитайте по формуле (15) ускорение свободного падения g и оцените по формуле (19) погрешность измерения g, которую дает эксперимент. Относительную погрешность измерения длины стержня в формуле (19) примите равной 0,5%. Значение коэффициента tq определяет преподаватель.

6.6. Используя данные таблицы, постройте график теоретической зависимости z (x), аккуратно проведя плавную кривую через точки с координатами . Отметьте на графике экспериментальные точки с координатами .

6.7. Рассчитайте по формуле (17) относительные расхождения d i и рассчитайте относительную среднеквадратическую погрешность отклонений экспериментальных значений от теоретических z т i, используя компьютерную программу «Расчет стандартной ошибки».

6.8. Сформулируйте выводы по результату измерения ускорения свободного падения и графикам, выполненным в лабораторной работе, а также вывод о том, удовлетворительно ли экспериментальные результаты согласуются с изучаемой теоретической моделью колебаний физического маятника.

 

7. Вопросы для допуска к лабораторной работе

7.1. Дайте определение физического и математического маятников. Приведите примеры. Что такое точка подвеса маятника?

7.2. Сформулируйте понятие момента инерции твердого тела. Как рассчитать момент инерции физического маятника, используемого в установке?

7.3. Запишите уравнение динамики вращательного движения физического маятника. Момент какой силы обеспечивает колебания маятника?

7.4. Запишите дифференциальное уравнение гармонических колебаний. Как рассчитать период колебаний физического маятника?

7.5. Запишите решение дифференциального уравнения гармонических колебаний. Сформулируйте понятия амплитуды, фазы и начальной фазы колебаний.

7.6. Как связаны циклическая частота, период и частота колебаний маятника?

7.7. Сформулируйте понятие приведенной длины физического маятника и выведите определяющую ее формулу (8).

7.8. Опишите конструкцию физического маятника, используемого в лабораторной работе. Какова особенность зависимости приведенной длины маятника от расстояния между точкой подвеса и центром диска?

7.9. Запишите формулу теоретической зависимости z (х). Как выглядит график функции z (х)?

7.10. Рассчитайте минимальную приведенную длину лабораторного физического маятника.

7.11. В чём состоит метод экспериментального определения ускорения свободного падения, который используется в лабораторной работе?

7.12. График какой линейной зависимости нужно построить в лабораторной работе? Какую величину и как нужно определять по этой зависимости?

7.13. Как в лабораторной работе рекомендовано определять погрешность косвенного измерения ускорения свободного падения?

7.14. Какая теоретическая зависимость экспериментально проверяется во втором методе исследования физического маятника? Изобразите график этой зависимости.

7.15. Каким образом проводится оценка совпадения теоретической зависимости с экспериментальными результатами во втором методе исследования?

 

8. Литература

1. Савельев И.В. Курс общей физики. Т. I. М.: Наука, 1998.

2. Трофимова Т.И. Курс физики. М.: Высшая школа, 1990.

3. Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 1989.

 

Пророк Божий и его Указание на Царя

Такой подход (способ определения Монарха) существует. Известно, что настоящий Царь является Помазанником Божьим и, в отличие от президента, не избирается людьми, а указывается свыше особым образом. Снова открываем книгу "Россия перед вторым пришествием", изданную в главном богословском центре РПЦ Троице-Сергиевой Лавре, и в главе "Последний царь" находим следующее суждение духовных отцев:

Для последней брани с антихристом нужен муж, сочетающий в себе горячую веру равноапостольного Константина, непоколебимое мужество великого Феодосия, государственную мудрость и богословскую прозорливость благоверного Юстиниана, самоотвержение Царя-Мученика Николая. И "легитимность" такого Царя должны удостоверять не всенародно избрание и не ссылки на "закон о престолонаследии", а муж "в силе и духе Илии",- пророк Божий, который, как Самуил, укажет несомненно избранника Божия… Итак, если возставит нам Господь Своего Пророка, который ясно возвестит нам волю Божию и укажет Его избранника,- будет у нас Царство Православное "на малое время последнее во еже оградити Церковь Свою". Но этого мы должны желать, это гласно исповедовать и об этом молиться, предавая, разумеется, исполнение прошения на волю Божию».

Более подробно вопрос об указании свыше на Царя через Пророка Божия исследован в известной монографии Л.А.Тихомирова "Монархическая государственность", в главке "Царь как Божественная делегация».

Таким образом, для достоверного определения личности Монарха требуется Пророк Божий "в силе и духе Илии", который безошибочно укажет нам Божью Волю в этом вопросе. Принадлежность будущего Монарха какой-либо Царской Династии, то есть соблюдение в нашем случае "закона о престолонаследии" значения не имеет. Вот что говорят Архиереи об этом:

«Когда Саул преступил заповеди Господни, Бог отверг его (1 Цар. 16. 1), велев Самуилу помазать на царство другого избранника Своего — Давида, сына простолюдина Иессея» (Основы социальной концепции РПЦ, III.1.)

Оказывается сын простолюдина, простой комбайнер из глубинки может буть помазан на царство, если на него укажет настоящий Пророк Божий. Как будем определять настоящего Пророка, «в силе и духе Илии»?

Вспомним, что Ветхозаветный Пророк Илия умел насылать бурю с грозой. Соответственно Пророк (авторитетная и всеми уважаемая Личность), который укажет нам на Царя, также должен уметь насылать бурю с грозой.

В настоящее время известен только один наш современник, безусловно авторитетный в народе, имеющий пророчества и вызывавший бури - Виктор Цой.
Он насылал бури, вихри и даже небольшие ураганы не слабее Пророка Илии, о чем есть достоверные свидетельства, например, Игоря Борисова – музыканта, который в 1985-86 годах был гитаристом «Кино»:

" В Париже (это был первый концерт группы в Европе) все было очень хаотично организовано, и в парк, где должен был проходить концерт «Кино» пришли просто какие-то люди на русских с инструментами поглазеть. И Виктор очень не хотел выходить на сцену. Что и было продемонстрировано, но природными силами. Абсолютно солнечным тихим вечером внезапно налетел такой вихрь, что всю сцену просто унесло из парка. У Тихомирова до сих пор остался скол на одной из бас-гитар от падения сценической фермы. "

Однако некоторые наши пастыри и отдельные богословы совершенно не допускают принадлежности Виктора Цоя высокому чину Пророков Божиих на том основании, что он якобы не принял Св. Крещения, не носил креста и не молился на Литургиях.
Возможно, эти пастыри и богословы просто забыли, что все известные доныне Пророки Божии креста не носили, к Церкви земной не принадлежали, а принадлежали Церкви Небесной и причащались Св. Тайн напрямую от невидимых нам Ангелов. В богословской л итературе этот вопрос освящен достаточно подробно. В особых случаях особых (Божьих) людей Ангелы причащали Св. Тайн сами невидимым для людей образом. Честной Пророк Иоанн Предтеча, Креститель Господень, вообще был без определенного места жительства, не получил духовного образования, креста не носил, на Литургиях не молился, и тем не менее Спаситель пожелал принять Св. Крещение у него. Странно, что об этом забывают.
То есть что получается, уроженец Израиля Иоанн может быть Пророком Божиим, а наш Виктор Цой, из своего отечества, не может. Что тут скажешь...

Некоторые православные монархисты же склоняются к мысли, что этим Пророком Божиим является Игорь Тальков, который носил крест, молился на Литургиях. Но у этого замечательного поэта, музыканта и православного христианина, если внимательно посмотреть, нет ничего похожего на Указания на Царя. С другой стороны, у него есть песня, посвященная Виктору Цою, в которой он указывает на Виктора, как на «божественного посланца»:

Поэты не рождаются случайно.
Они летят на Землю с высоты.
Их жизнь окpyжена великой тайной,
Хотя они откpыты и пpосты.
Глаза таких божественных посланцев
Всегда печальны и веpны мечте…

Видимо главный критерий, по которому можно достоверно судить Пророк Цой или нет - сами его пророчества и откровения.
Слушаем песни Цоя и легко находим то самое Указание на Царя, очевидно иносказательное:

"Над землей - мороз,
Что не тронь - все лед,
Лишь во сне моем поет капель.
А снег идет стеной,
А снег идет весь день,
А за той стеной стоит Апрель.

А он придет и приведет за собой весну,
И рассеет серых туч войска.
А когда мы все посмотрим в глаза его,
На нас из глаз его посмотрит тоска.
И откроются двери домов,
Да ты садись, а то в ногах правды нет.
А когда мы все посмотрим в глаза его,

То увидим в тех глазах Солнца свет.

На теле ран не счесть,
Нелегки шаги,
Лишь в груди горит звезда.
И умрет Апрель,
И родится вновь,
И придет уже навсегда…»

Согласитесь, текст этой песни вполне ложится на кальку откровения Преподобного Авеля. Некто “Апрель'' («Рог спасения русского») “приведет весну и рассеет серых туч войска’’ («Дымом фимиама и молитв наполнится и процветет аки крин небесный»). Если мы сможем определить, кому Цой посвятил эту песню, то и получаем искомую Личность будущего Августейшего Монарха нашего.







Дата добавления: 2015-10-15; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия