Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ





ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Перед выполнением контрольной работы рекомендуется изучить теорию, необходимую для выполнения работы, и ответить на вопросы для самопроверки.

 

Вопросы для самопроверки

 

Дайте определения:

1. вектора и модуля вектора;

2. коллинеарности, компланарности, равенства векторов;

3. линейных операций над векторами; *)

4. базиса на прямой, на плоскости и в пространстве;

5. линейной зависимости и независимости векторов;

6. скалярного произведения векторов; *)

7. ортонормированного базиса;

8. векторного произведения векторов; *)

9. смешанного произведения трех векторов; *)

10. определителей 2-го и 3-го порядков; *)

11. полярной, цилиндрической и сферической систем координат.

12. Как выражаются введенные операции над векторами через их координаты в ортонормированном базисе?

13. Как преобразуются координаты вектора при замене базиса пространства (плоскости)?

14. Какому условию должны удовлетворять координаты трех векторов, чтобы их можно было принять за базис пространства?

15. Как можно найти точку пересечения а) двух линий на плоскости? б) трех поверхностей? в) линии и поверхности?

16. Опишите параметрический способ задания линий и поверхностей.

 

Напишите:

 

17. векторное уравнение плоскости, имеющей заданную нормаль и проходящей через заданную точку;

18. векторное уравнение прямой, имеющей заданный направляющий вектор и проходящей через заданную точку;

19. уравнения прямой, проходящей через две точки, в пространстве и на плоскости;

20. уравнение плоскости, проходящей через три заданные точки;

21. формулы вычисления углов а) между двумя прямыми (на плоскости и в пространстве), б) между двумя плоскостями, в) между прямой и плоскостью;

22. условия параллельности и перпендикулярности двух прямых (на плоскости и в пространстве), двух плоскостей, прямой и плоскости;

23. канонические уравнения эллипса, гиперболы, параболы; уравнения асимптот гиперболы;

24. канонические уравнения поверхностей 2-го порядка;

25. примеры уравнений линий в полярных координатах;

 

Дайте определения:

 

26. матрицы; линейных операций с матрицами; *)

27. определителя; *) минора, алгебраического дополнения;

28. решения системы линейных уравнений, совместности и несовместности системы.

29. Сформулируйте теорему Кронекера – Капелли.

30. Напишите формулы Крамера и дайте условие их применимости.

31. При каком условии однородная система линейных уранений с квадратной матрицей имеет ненулевое решение?

32. Опишите метод Гаусса решения систем линейных уравнений и отыскания ранга матрицы.

 

Дайте определения:

 

33. ранга матрицы;

34. свободных и базисных неизвестных в системе линейных уравнений;

35. общего решения однородной и неоднородной линейной системы;

36. произведения двух матриц; *)

37. обратной матрицы;

38. линейного (векторного) пространства Ln;

39. линейной зависимости и независимости векторов в Ln;

40. базиса и размерности линейного пространства Ln;

41. векторной формы записи системы линейных уравнений;

42. евклидова пространства ;

43. модуля вектора и угла между векторами в евклидовом пространстве ;

44. линейного преобразования пространства и его матрицы;

45. композиции линейных преобразований и ее матрицы;

46. собственных значений и собственных векторов линейного преобразования;

47. квадратичной формы и ее матрицы.

48. Как применяется теория квадратичных форм для приведения уравнений линий и поверхностей 2-го порядка к каноническому виду?

 

 







Дата добавления: 2015-10-15; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия