Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель с двумя независимыми переменными





Обобщением линейной регрессионной модели с двумя переменными является многомерная регрессионная модель (или модель множественной регрессии). Уравнение множественной регрессии может быть представлено в виде

где вектор независимых (объясняющих) переменных; вектор параметров (подлежащих определению); случайная ошибка (отклонение); зависимая (объясняемая) переменная.

Рассмотрим самую употребляемую и наиболее простую модель множественной регрессии – модель множественной линейной регрессии.

Теоретическое линейное уравнение регрессии имеет вид:

или для индивидуальных наблюдений

Здесь вектор размерности неизвестных параметров. называется j -м теоретическим коэффициентом регрессии (частичным коэффициентом регрессии). Он отражает влияние на условное математическое ожидание зависимой переменной объясняющей переменной при условии, что все другие объясняющие переменные модели остаются постоянными.
свободный член, определяющий значение в случае, когда все объясняющие переменные равны нулю.

Если число наблюдений , то существует бесконечно много различных векторов параметров, при которых линейная формула (3) связи между X и Y будет выполняться абсолютно точно. Если число наблюдений , то вектор β рассчитывается единственным образом. При возникает необходимость оптимизации, т.е. оценивания параметров при которых формула (3) дает наилучшее приближение для имеющихся наблюдений.

В данном случае число называется числом степеней свободы.

Наиболее распространенным методом оценки параметров уравнения множественной регрессии является метод наименьших квадратов (МНК).







Дата добавления: 2015-10-15; просмотров: 1671. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия