Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель с двумя независимыми переменными





Обобщением линейной регрессионной модели с двумя переменными является многомерная регрессионная модель (или модель множественной регрессии). Уравнение множественной регрессии может быть представлено в виде

где вектор независимых (объясняющих) переменных; вектор параметров (подлежащих определению); случайная ошибка (отклонение); зависимая (объясняемая) переменная.

Рассмотрим самую употребляемую и наиболее простую модель множественной регрессии – модель множественной линейной регрессии.

Теоретическое линейное уравнение регрессии имеет вид:

или для индивидуальных наблюдений

Здесь вектор размерности неизвестных параметров. называется j -м теоретическим коэффициентом регрессии (частичным коэффициентом регрессии). Он отражает влияние на условное математическое ожидание зависимой переменной объясняющей переменной при условии, что все другие объясняющие переменные модели остаются постоянными.
свободный член, определяющий значение в случае, когда все объясняющие переменные равны нулю.

Если число наблюдений , то существует бесконечно много различных векторов параметров, при которых линейная формула (3) связи между X и Y будет выполняться абсолютно точно. Если число наблюдений , то вектор β рассчитывается единственным образом. При возникает необходимость оптимизации, т.е. оценивания параметров при которых формула (3) дает наилучшее приближение для имеющихся наблюдений.

В данном случае число называется числом степеней свободы.

Наиболее распространенным методом оценки параметров уравнения множественной регрессии является метод наименьших квадратов (МНК).







Дата добавления: 2015-10-15; просмотров: 1671. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия